Analyze Electrooculography (EOG)

Analyze Electrooculography (EOG)#

This example can be referenced by citing the package.

This example shows how to use NeuroKit to analyze EOG data.

# Load NeuroKit and other useful packages
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import neurokit2 as nk

Explore the EOG signal#

Let’s load the example dataset corresponding to a vertical EOG signal.

eog_signal = nk.data('eog_100hz.csv')

nk.signal_plot(eog_signal)
../../_images/45c0aed6f838372139fbae31f1617c306bb3af50010f090441cff2c1c308014d.png

Let’s zoom in to some areas where clear blinks are present.

nk.signal_plot(eog_signal[100:1700])
../../_images/8fab37301a6ae55dc172e099e0ecfb045b40ef9258ee1f56665b5bc78ebf65f5.png

Clean the signal#

We can now filter the signal to remove some noise and trends.

eog_cleaned = nk.eog_clean(eog_signal, sampling_rate=100, method='neurokit')

Let’s visualize the same chunk and compare the clean version with the original signal.

nk.signal_plot([eog_signal[100:1700], eog_cleaned[100:1700]], 
               labels=["Raw Signal", "Cleaned Signal"])
../../_images/d37d19056d26fa9e1fea3d8e922a9d5e63fa97956235de61c2a6c4287282b581.png