# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
from .optim_complexity_tolerance import _entropy_apen, complexity_tolerance
from .utils_entropy import _get_count
[docs]
def entropy_approximate(
signal, delay=1, dimension=2, tolerance="sd", corrected=False, **kwargs
):
"""**Approximate entropy (ApEn) and its corrected version (cApEn)**
Approximate entropy is a technique used to quantify the amount of regularity and the
unpredictability of fluctuations over time-series data. The advantages of ApEn include lower
computational demand (ApEn can be designed to work for small data samples (< 50 data points)
and can be applied in real time) and less sensitive to noise. However, ApEn is heavily
dependent on the record length and lacks relative consistency.
This function can be called either via ``entropy_approximate()`` or ``complexity_apen()``, and
the corrected version via ``complexity_capen()``.
Parameters
----------
signal : Union[list, np.array, pd.Series]
The signal (i.e., a time series) in the form of a vector of values.
delay : int
Time delay (often denoted *Tau* :math:`\\tau`, sometimes referred to as *lag*) in samples.
See :func:`complexity_delay` to estimate the optimal value for this parameter.
dimension : int
Embedding Dimension (*m*, sometimes referred to as *d* or *order*). See
:func:`complexity_dimension` to estimate the optimal value for this parameter.
tolerance : float
Tolerance (often denoted as *r*), distance to consider two data points as similar. If
``"sd"`` (default), will be set to :math:`0.2 * SD_{signal}`. See
:func:`complexity_tolerance` to estimate the optimal value for this parameter.
corrected : bool
If true, will compute corrected ApEn (cApEn), see Porta (2007).
**kwargs
Other arguments.
See Also
--------
entropy_shannon, entropy_sample, entropy_fuzzy
Returns
----------
apen : float
The approximate entropy of the single time series.
info : dict
A dictionary containing additional information regarding the parameters used
to compute approximate entropy.
Examples
----------
.. ipython:: python
import neurokit2 as nk
signal = nk.signal_simulate(duration=2, frequency=5)
apen, parameters = nk.entropy_approximate(signal)
apen
capen, parameters = nk.entropy_approximate(signal, corrected=True)
capen
References
-----------
* Sabeti, M., Katebi, S., & Boostani, R. (2009). Entropy and complexity measures for EEG signal
classification of schizophrenic and control participants. Artificial intelligence in medicine,
47(3), 263-274.
* Shi, B., Zhang, Y., Yuan, C., Wang, S., & Li, P. (2017). Entropy analysis of short-term
heartbeat interval time series during regular walking. Entropy, 19(10), 568.
"""
# Sanity checks
if isinstance(signal, (np.ndarray, pd.DataFrame)) and signal.ndim > 1:
raise ValueError(
"Multidimensional inputs (e.g., matrices or multichannel data) are not supported yet."
)
# Store parameters
info = {
"Dimension": dimension,
"Delay": delay,
"Tolerance": complexity_tolerance(
signal,
method=tolerance,
dimension=dimension,
show=False,
)[0],
"Corrected": corrected,
}
# Compute index
if corrected is False:
# ApEn is implemented in 'utils_entropy.py' to avoid circular imports
# as one of the method for optimizing tolerance relies on ApEn
out, _ = _entropy_apen(signal, delay, dimension, info["Tolerance"], **kwargs)
else:
out = _entropy_capen(signal, delay, dimension, info["Tolerance"], **kwargs)
return out, info
# =============================================================================
# Utils
# =============================================================================
def _entropy_capen(signal, delay, dimension, tolerance, **kwargs):
__, count1, _ = _get_count(
signal,
delay=delay,
dimension=dimension,
tolerance=tolerance,
approximate=True,
**kwargs,
)
__, count2, _ = _get_count(
signal,
delay=delay,
dimension=dimension + 1,
tolerance=tolerance,
approximate=True,
**kwargs,
)
# Limit the number of vectors to N - (dimension + 1) * delay
upper_limit = len(signal) - (dimension + 1) * delay
# Correction to replace the ratio of count1 and count2 when either is equal to 1
# As when count = 1, only the vector itself is within r distance
correction = 1 / upper_limit
vector_similarity = np.full(upper_limit, np.nan)
for i in np.arange(upper_limit):
if count1.astype(int)[i] != 1 and count2.astype(int)[i] != 1:
vector_similarity[i] = np.log(count2[i] / count1[i])
else:
vector_similarity[i] = np.log(correction)
return -np.mean(vector_similarity)