import numpy as np
import pandas as pd
import scipy.stats
from .utils_complexity_symbolize import complexity_symbolize
[docs]
def entropy_shannon(signal=None, base=2, symbolize=None, show=False, freq=None, **kwargs):
    """**Shannon entropy (SE or ShanEn)**
    Compute Shannon entropy (SE). Entropy is a measure of unpredictability of the
    state, or equivalently, of its average information content. Shannon entropy (SE) is one of the
    first and most basic measures of entropy and a foundational concept of information theory,
    introduced by Shannon (1948) to quantify the amount of information in a variable.
    .. math::
      ShanEn = -\\sum_{x \\in \\mathcal{X}} p(x) \\log_2 p(x)
    Shannon attempted to extend Shannon entropy in what has become known as Differential Entropy
    (see :func:`entropy_differential`).
    Because Shannon entropy was meant for symbolic sequences (discrete events such as ["A", "B",
    "B", "A"]), it does not do well with continuous signals. One option is to binarize (i.e., cut)
    the signal into a number of bins using for instance ``pd.cut(signal, bins=100, labels=False)``.
    This can be done automatically using the ``method`` argument, which will be transferred to
    :func:`complexity_symbolize`.
    This function can be called either via ``entropy_shannon()`` or ``complexity_se()``.
    Parameters
    ----------
    signal : Union[list, np.array, pd.Series]
        The signal (i.e., a time series) in the form of a vector of values.
    base: float
        The logarithmic base to use, defaults to ``2``, giving a unit in *bits*. Note that ``scipy.
        stats.entropy()`` uses Euler's number (``np.e``) as default (the natural logarithm), giving
        a measure of information expressed in *nats*.
    symbolize : str
        Method to convert a continuous signal input into a symbolic (discrete) signal. ``None`` by
        default, which skips the process (and assumes the input is already discrete). See
        :func:`complexity_symbolize` for details.
    show : bool
        If ``True``, will show the discrete the signal.
    freq : np.array
        Instead of a signal, a vector of probabilities can be provided (used for instance in
        :func:`entropy_permutation`).
    **kwargs
        Optional arguments. Not used for now.
    Returns
    --------
    shanen : float
        The Shannon entropy of the signal.
    info : dict
        A dictionary containing additional information regarding the parameters used
        to compute Shannon entropy.
    See Also
    --------
    entropy_differential, entropy_cumulativeresidual, entropy_tsallis, entropy_renyi,
    entropy_maximum
    Examples
    ----------
    .. ipython:: python
      import neurokit2 as nk
      signal = [1, 1, 5, 5, 2, 8, 1]
      _, freq = np.unique(signal, return_counts=True)
      nk.entropy_shannon(freq=freq)
    .. ipython:: python
      # Simulate a Signal with Laplace Noise
      signal = nk.signal_simulate(duration=2, frequency=5, noise=0.01)
      # Compute Shannon's Entropy
      @savefig p_entropy_shannon1.png scale=100%
      shanen, info = nk.entropy_shannon(signal, symbolize=3, show=True)
      @suppress
      plt.close()
    .. ipython:: python
      shanen
    Compare with ``scipy`` (using the same base).
    .. ipython:: python
      import scipy.stats
      # Make the binning ourselves
      binned = pd.cut(signal, bins=3, labels=False)
      scipy.stats.entropy(pd.Series(binned).value_counts())
      shanen, info = nk.entropy_shannon(binned, base=np.e)
      shanen
    References
    -----------
    * Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical
      journal, 27(3), 379-423.
    """
    if freq is None:
        _, freq = _entropy_freq(signal, symbolize=symbolize, show=show)
    return scipy.stats.entropy(freq, base=base), {"Symbolization": symbolize, "Base": base} 
# =============================================================================
# Compute frequencies (common to Shannon and Tsallis)
# =============================================================================
def _entropy_freq(signal, symbolize=None, show=False):
    # Sanity checks
    if isinstance(signal, (np.ndarray, pd.DataFrame)) and signal.ndim > 1:
        raise ValueError(
            "Multidimensional inputs (e.g., matrices or multichannel data) are not supported yet."
        )
    # Check if string ('ABBA'), and convert each character to list (['A', 'B', 'B', 'A'])
    if isinstance(signal, str):
        signal = list(signal)
    # Force to array
    if not isinstance(signal, np.ndarray):
        signal = np.array(signal)
    # Make discrete
    if np.isscalar(signal) is False:
        signal = complexity_symbolize(signal, method=symbolize, show=show)
    return np.unique(signal, return_counts=True)