import matplotlib.pyplot as plt
import matplotlib.ticker
import numpy as np
import scipy.spatial
from .optim_complexity_tolerance import complexity_tolerance
from .utils_complexity_embedding import complexity_embedding
[docs]
def recurrence_matrix(signal, delay=1, dimension=3, tolerance="default", show=False):
"""**Recurrence Matrix**
Fast Python implementation of recurrence matrix (tested against pyRQA). Returns a tuple
with the recurrence matrix (made of 0s and 1s) and the distance matrix (the non-binarized
version of the former).
It is used in :func:`Recurrence Quantification Analysis (RQA) <complexity_rqa>`.
Parameters
----------
signal : Union[list, np.ndarray, pd.Series]
The signal (i.e., a time series) in the form of a vector of values.
delay : int
Time delay (often denoted *Tau* :math:`\\tau`, sometimes referred to as *lag*) in samples.
See :func:`complexity_delay` to estimate the optimal value for this parameter.
dimension : int
Embedding Dimension (*m*, sometimes referred to as *d* or *order*). See
:func:`complexity_dimension` to estimate the optimal value for this parameter.
tolerance : float
Tolerance (often denoted as *r*), distance to consider two data points as similar. If
``"sd"`` (default), will be set to :math:`0.2 * SD_{signal}`. See
:func:`complexity_tolerance` to estimate the optimal value for this parameter. A rule of
thumb is to set *r* so that the percentage of points classified as recurrences is about
2-5%.
show : bool
Visualise recurrence matrix.
See Also
--------
complexity_embedding, complexity_delay, complexity_dimension, complexity_tolerance,
complexity_rqa
Returns
-------
np.ndarray
The recurrence matrix.
np.ndarray
The distance matrix.
Examples
----------
.. ipython:: python
import neurokit2 as nk
signal = nk.signal_simulate(duration=2, sampling_rate=100, frequency=[5, 6], noise=0.01)
# Default r
@savefig p_recurrence_matrix1.png scale=100%
rc, _ = nk.recurrence_matrix(signal, show=True)
@suppress
plt.close()
.. ipython:: python
# Larger radius
@savefig p_recurrence_matrix2.png scale=100%
rc, d = nk.recurrence_matrix(signal, tolerance=0.5, show=True)
@suppress
plt.close()
.. ipython:: python
# Optimization of tolerance via recurrence matrix
@savefig p_recurrence_matrix3.png scale=100%
tol, _ = nk.complexity_tolerance(signal, dimension=1, delay=3, method="recurrence", show=True)
@suppress
plt.close()
.. ipython:: python
@savefig p_recurrence_matrix4.png scale=100%
rc, d = nk.recurrence_matrix(signal, tolerance=tol, show=True)
@suppress
plt.close()
References
----------
* Rawald, T., Sips, M., Marwan, N., & Dransch, D. (2014). Fast computation of recurrences
in long time series. In Translational Recurrences (pp. 17-29). Springer, Cham.
* Dabiré, H., Mestivier, D., Jarnet, J., Safar, M. E., & Chau, N. P. (1998). Quantification of
sympathetic and parasympathetic tones by nonlinear indexes in normotensive rats. American
Journal of Physiology-Heart and Circulatory Physiology, 275(4), H1290-H1297.
"""
tolerance, _ = complexity_tolerance(
signal, method=tolerance, delay=delay, dimension=dimension, show=False
)
# Time-delay embedding
emb = complexity_embedding(signal, delay=delay, dimension=dimension)
# Compute distance matrix
d = scipy.spatial.distance.cdist(emb, emb, metric="euclidean")
# Initialize the recurrence matrix filled with 0s
recmat = np.zeros((len(d), len(d)))
# If lower than tolerance, then 1
recmat[d <= tolerance] = 1
# Plotting
if show is True:
try:
fig, axes = plt.subplots(ncols=2)
axes[0].imshow(recmat, cmap="Greys")
axes[0].set_title("Recurrence Matrix")
im = axes[1].imshow(d)
axes[1].set_title("Distance")
cbar = fig.colorbar(im, ax=axes[1], fraction=0.046, pad=0.04)
cbar.ax.plot([0, 1], [tolerance] * 2, color="r")
# Flip the matrix to match traditional RQA representation
axes[0].invert_yaxis()
axes[1].invert_yaxis()
axes[0].xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(integer=True))
axes[1].xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(integer=True))
except MemoryError as e:
raise MemoryError(
"NeuroKit error: complexity_rqa(): the recurrence plot is too large to display. ",
"You can recover the matrix from the parameters and try to display parts of it.",
) from e
return recmat, d