Source code for neurokit2.data.read_xdf

# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd


[docs] def read_xdf(filename, upsample=2, fillmissing=None): """**Read and tidy an XDF file** Reads and tidies an XDF file with multiple streams into a Pandas DataFrame. The function outputs both the dataframe and the information (such as the sampling rate). Note that, as XDF can store streams with different sampling rates and different time stamps, **the function will resample all streams to 2 times (default) the highest sampling rate** (to minimize aliasing). The final sampling rate can be found in the ``info`` dictionary. .. note:: This function requires the *pyxdf* module to be installed. You can install it with ``pip install pyxdf``. Parameters ---------- filename : str Path (with the extension) of an XDF file (e.g., ``"data.xdf"``). upsample : float Factor by which to upsample the data. Default is 2, which means that the data will be resampled to 2 times the highest sampling rate. You can increase that to further reduce edge-distortion, especially for high frequency signals like EEG. fillmissing : float The maximum duration in seconds of missing data to fill. ``None`` (default) will interpolate all missing values and prevent issues with NaNs. However, it might be important to keep the missing intervals (e.g., ``fillmissing=1`` to keep interruptions of more than 1 s) typically corresponding to signal loss or streaming interruptions and exclude them from further analysis. Returns ---------- df : DataFrame, dict The BITalino file as a pandas dataframe if one device was read, or a dictionary of pandas dataframes (one dataframe per device) if multiple devices are read. info : dict The metadata information containing the sampling rate(s). See Also -------- .read_bitalino, .signal_resample Examples -------- .. ipython:: python import neurokit2 as nk # data, info = nk.read_xdf("data.xdf") # sampling_rate = info["sampling_rate"] """ try: import pyxdf except ImportError: raise ImportError( "The 'pyxdf' module is required for this function to run. ", "Please install it first (`pip install pyxdf`).", ) # Load file # TODO: would be nice to be able to stream a file from URL streams, header = pyxdf.load_xdf(filename) # Get smaller time stamp to later use as offset (zero point) min_ts = min([min(s["time_stamps"]) for s in streams]) # Loop through all the streams and convert to dataframes dfs = [] for stream in streams: # Get columns names and make dataframe channels_info = stream["info"]["desc"][0]["channels"][0]["channel"] cols = [channels_info[i]["label"][0] for i in range(len(channels_info))] dat = pd.DataFrame(stream["time_series"], columns=cols) # Special treatment for some devices if stream["info"]["name"][0] == "Muse": # Rename GYRO channels if stream["info"]["type"][0] == "GYRO": dat = dat.rename(columns={"X": "GYRO_X", "Y": "GYRO_Y", "Z": "GYRO_Z"}) # Compute movement dat["GYRO"] = np.sqrt(dat["GYRO_X"] ** 2 + dat["GYRO_Y"] ** 2 + dat["GYRO_Z"] ** 2) if stream["info"]["type"][0] == "ACC": dat = dat.rename(columns={"X": "ACC_X", "Y": "ACC_Y", "Z": "ACC_Z"}) # Compute acceleration dat["ACC"] = np.sqrt(dat["ACC_X"] ** 2 + dat["ACC_Y"] ** 2 + dat["ACC_Z"] ** 2) # Muse - PPG data has three channels: ambient, infrared, red if stream["info"]["type"][0] == "PPG": dat = dat.rename(columns={"PPG1": "LUX", "PPG2": "PPG", "PPG3": "RED", "IR": "PPG"}) # Zeros suggest interruptions, better to replace with NaNs (I think?) dat["PPG"] = dat["PPG"].replace(0, value=np.nan) dat["LUX"] = dat["LUX"].replace(0, value=np.nan) # Get time stamps and offset from minimum time stamp dat.index = pd.to_datetime(stream["time_stamps"] - min_ts, unit="s") dfs.append(dat) # Store info of each stream ---------------------------------------------------------------- # Store metadata info = { "sampling_rates_original": [float(s["info"]["nominal_srate"][0]) for s in streams], "sampling_rates_effective": [float(s["info"]["effective_srate"]) for s in streams], "datetime": header["info"]["datetime"][0], "data": dfs, } # Synchronize ------------------------------------------------------------------------------ # Merge all dataframes by timestamps # Note: this is a critical steps, as it inserts timestamps and makes it non-evenly spread df = dfs[0] for i in range(1, len(dfs)): df = pd.merge(df, dfs[i], how="outer", left_index=True, right_index=True) df = df.sort_index() # Resample and Interpolate ----------------------------------------------------------------- # Final sampling rate will be 2 times the maximum sampling rate # (to minimize aliasing during interpolation) info["sampling_rate"] = int(np.max(info["sampling_rates_original"]) * upsample) if fillmissing is not None: fillmissing = int(info["sampling_rate"] * fillmissing) # Create new index with evenly spaced timestamps idx = pd.date_range(df.index.min(), df.index.max(), freq=str(1000 / info["sampling_rate"]) + "ms") # https://stackoverflow.com/questions/47148446/pandas-resample-interpolate-is-producing-nans df = df.reindex(df.index.union(idx)).interpolate(method="index", limit=fillmissing).reindex(idx) return df, info