Source code for neurokit2.ecg.ecg_analyze
# -*- coding: utf-8 -*-
import pandas as pd
from .ecg_eventrelated import ecg_eventrelated
from .ecg_intervalrelated import ecg_intervalrelated
[docs]
def ecg_analyze(data, sampling_rate=1000, method="auto"):
"""**Automated Analysis ECG**
Performs ECG analysis by computing relevant features and indices on either epochs
(event-related analysis) or on longer periods of data (interval-related analysis), such as
resting-state data.
Parameters
----------
data : Union[dict, pd.DataFrame]
A dictionary of epochs, containing one DataFrame per epoch, usually obtained via
``epochs_create()``, or a DataFrame containing all epochs, usually obtained via
``epochs_to_df()``. Can also take a DataFrame of processed signals from a longer period of
data, typically generated by ``ecg_process()`` or ``bio_process()``. Can also take a dict
containing sets of separate periods of data.
sampling_rate : int
The sampling frequency of the signal (in Hz, i.e., samples/second). Defaults to 1000Hz.
method : str
Can be one of ``"event-related"`` for event-related analysis on epochs, or
``"interval-related"`` for analysis on longer periods of data. Defaults to ``auto``,
where the method will be chosen based on the mean duration of the data (``"event-related"``
for duration under 10s).
Returns
-------
DataFrame
A dataframe containing the analyzed ECG features. If
event-related analysis is conducted, each epoch is indicated
by the ``Label`` column. See ``ecg_eventrelated()`` and
``ecg_intervalrelated()`` docstrings for details.
See Also
--------
.bio_process, ecg_process, .epochs_create, ecg_eventrelated, ecg_intervalrelated
Examples
----------
* **Example 1**: Event-related analysis
.. ipython:: python
import neurokit2 as nk
# Download the data
data = nk.data("bio_eventrelated_100hz")
# Process the data for event-related analysis
df, info = nk.bio_process(ecg=data["ECG"], sampling_rate=100)
events = nk.events_find(data["Photosensor"], threshold_keep='below',
event_conditions=["Negative", "Neutral", "Neutral", "Negative"])
epochs = nk.epochs_create(df, events, sampling_rate=100, epochs_start=-0.1, epochs_end=1.9)
# Analyze
analyze_epochs = nk.ecg_analyze(epochs, sampling_rate=100)
# Get a dataframe with all the results
analyze_epochs
* **Example 2**: Interval-related analysis
.. ipython:: python
import neurokit2 as nk
# Download the resting-state data
data = nk.data("bio_resting_5min_100hz")
# Process the data
df, info = nk.ecg_process(data["ECG"], sampling_rate=100)
# Analyze
analyze_df = nk.ecg_analyze(df, sampling_rate=100)
# Get results
analyze_df
"""
method = method.lower()
# Event-related analysis
if method in ["event-related", "event", "epoch"]:
# Sanity checks
if isinstance(data, dict):
for i in data:
colnames = data[i].columns.values
elif isinstance(data, pd.DataFrame):
colnames = data.columns.values
if len([i for i in colnames if "Label" in i]) == 0:
raise ValueError(
"NeuroKit error: ecg_analyze(): Wrong input or method,"
"we couldn't extract epochs features."
)
else:
features = ecg_eventrelated(data)
# Interval-related analysis
elif method in ["interval-related", "interval", "resting-state"]:
features = ecg_intervalrelated(data, sampling_rate=sampling_rate)
# Auto
elif method in ["auto"]:
if isinstance(data, dict):
for i in data:
duration = len(data[i]) / sampling_rate
if duration >= 10:
features = ecg_intervalrelated(data, sampling_rate=sampling_rate)
else:
features = ecg_eventrelated(data)
if isinstance(data, pd.DataFrame):
if "Label" in data.columns:
epoch_len = data["Label"].value_counts()[0]
duration = epoch_len / sampling_rate
else:
duration = len(data) / sampling_rate
if duration >= 10:
features = ecg_intervalrelated(data, sampling_rate=sampling_rate)
else:
features = ecg_eventrelated(data)
return features