Source code for neurokit2.ecg.ecg_delineate

# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy.signal

from ..epochs import epochs_create, epochs_to_df
from ..signal import (
    signal_findpeaks,
    signal_formatpeaks,
    signal_rate,
    signal_resample,
    signal_smooth,
    signal_zerocrossings,
)
from ..stats import standardize
from .ecg_peaks import ecg_peaks
from .ecg_segment import ecg_segment


[docs] def ecg_delineate( ecg_cleaned, rpeaks=None, sampling_rate=1000, method="dwt", show=False, show_type="peaks", check=False, **kwargs ): """**Delineate QRS complex** Function to delineate the QRS complex, i.e., the different waves of the cardiac cycles. A typical ECG heartbeat consists of a P wave, a QRS complex and a T wave. The P wave represents the wave of depolarization that spreads from the SA-node throughout the atria. The QRS complex reflects the rapid depolarization of the right and left ventricles. Since the ventricles are the largest part of the heart, in terms of mass, the QRS complex usually has a much larger amplitude than the P-wave. The T wave represents the ventricular repolarization of the ventricles.On rare occasions, a U wave can be seen following the T wave. The U wave is believed to be related to the last remnants of ventricular repolarization. Parameters ---------- ecg_cleaned : Union[list, np.array, pd.Series] The cleaned ECG channel as returned by ``ecg_clean()``. rpeaks : Union[list, np.array, pd.Series] The samples at which R-peaks occur. Accessible with the key "ECG_R_Peaks" in the info dictionary returned by ``ecg_findpeaks()``. sampling_rate : int The sampling frequency of ``ecg_signal`` (in Hz, i.e., samples/second). Defaults to 1000. method : str Can be one of ``"peak"`` for a peak-based method, ``"prominence"`` for a peak-prominence-based method (Emrich et al., 2024), ``"cwt"`` for continuous wavelet transform or ``"dwt"`` (default) for discrete wavelet transform. The ``"prominence"`` method might be useful to detect the waves, allowing to set individual physiological limits (see kwargs), while the ``"dwt"`` method might be more precise for detecting the onsets and offsets of the waves (but might exhibit lower accuracy when there is significant variation in wave morphology). The ``"peak"`` method, which uses the zero-crossings of the signal derivatives, works best with very clean signals. show : bool If ``True``, will return a plot to visualizing the delineated waves information. show_type: str The type of delineated waves information showed in the plot. Can be ``"peaks"``, ``"bounds_R"``, ``"bounds_T"``, ``"bounds_P"`` or ``"all"``. check : bool Defaults to ``False``. If ``True``, replaces the delineated features with ``np.nan`` if its standardized distance from R-peaks is more than 3. **kwargs Other optional arguments: If using the ``"prominence"`` method, additional parameters (in milliseconds) can be passed to set individual physiological limits for the search boundaries: - ``max_qrs_interval``: The maximum allowable QRS complex interval. Defaults to 180 ms. - ``max_pr_interval``: The maximum PR interval duration. Defaults to 300 ms. - ``max_r_rise_time``: Maximum duration for the R-wave rise. Defaults to 120 ms. - ``typical_st_segment``: Typical duration of the ST segment. Defaults to 150 ms. - ``max_p_basepoint_interval``: The maximum interval between P-wave on- and offset. Defaults to 100 ms. - ``max_r_basepoint_interval``: The maximum interval between R-wave on- and offset. Defaults to 100 ms. - ``max_t_basepoint_interval``: The maximum interval between T-wave on- and offset. Defaults to 200 ms. Returns ------- waves : dict A dictionary containing additional information. For derivative method, the dictionary contains the samples at which P-peaks, Q-peaks, S-peaks, T-peaks, P-onsets and T-offsets occur, accessible with the keys ``"ECG_P_Peaks"``, ``"ECG_Q_Peaks"``, ``"ECG_S_Peaks"``, ``"ECG_T_Peaks"``, ``"ECG_P_Onsets"``, ``"ECG_T_Offsets"``, respectively. For the wavelet and prominence methods, in addition to the above information, the dictionary contains the samples at which QRS-onsets and QRS-offsets occur, accessible with the key ``"ECG_P_Peaks"``, ``"ECG_T_Peaks"``, ``"ECG_P_Onsets"``, ``"ECG_P_Offsets"``, ``"ECG_Q_Peaks"``, ``"ECG_S_Peaks"``, ``"ECG_T_Onsets"``, ``"ECG_T_Offsets"``, ``"ECG_R_Onsets"``, ``"ECG_R_Offsets"``, respectively. signals : DataFrame A DataFrame of same length as the input signal in which occurrences of peaks, onsets and offsets marked as "1" in a list of zeros. See Also -------- ecg_clean, .signal_fixpeaks, ecg_peaks, .signal_rate, ecg_process, ecg_plot Examples -------- * Step 1. Delineate .. ipython:: python import neurokit2 as nk # Simulate ECG signal ecg = nk.ecg_simulate(duration=10, sampling_rate=1000) # Get R-peaks location _, rpeaks = nk.ecg_peaks(ecg, sampling_rate=1000) # Delineate cardiac cycle signals, waves = nk.ecg_delineate(ecg, rpeaks, sampling_rate=1000) * Step 2. Plot P-Peaks and T-Peaks .. ipython:: python @savefig p_ecg_delineate1.png scale=100% nk.events_plot([waves["ECG_P_Peaks"], waves["ECG_T_Peaks"]], ecg) @suppress plt.close() References -------------- - Martínez, J. P., Almeida, R., Olmos, S., Rocha, A. P., & Laguna, P. (2004). A wavelet-based ECG delineator: evaluation on standard databases. IEEE Transactions on biomedical engineering, 51(4), 570-581. - Emrich, J., Gargano, A., Koka, T., & Muma, M. (2024). Physiology-Informed ECG Delineation Based on Peak Prominence. 32nd European Signal Processing Conference (EUSIPCO), 1402-1406. """ # Sanitize input for ecg_cleaned if isinstance(ecg_cleaned, pd.DataFrame): cols = [col for col in ecg_cleaned.columns if "ECG_Clean" in col] if cols: ecg_cleaned = ecg_cleaned[cols[0]].values else: raise ValueError( "NeuroKit error: ecg_delineate(): Wrong input, we couldn't extract" "cleaned signal." ) elif isinstance(ecg_cleaned, dict): for i in ecg_cleaned: cols = [col for col in ecg_cleaned[i].columns if "ECG_Clean" in col] if cols: signals = epochs_to_df(ecg_cleaned) ecg_cleaned = signals[cols[0]].values else: raise ValueError( "NeuroKit error: ecg_delineate(): Wrong input, we couldn't extract" "cleaned signal." ) elif isinstance(ecg_cleaned, pd.Series): ecg_cleaned = ecg_cleaned.values # Sanitize input for rpeaks if rpeaks is None: _, rpeaks = ecg_peaks(ecg_cleaned, sampling_rate=sampling_rate) rpeaks = rpeaks["ECG_R_Peaks"] if isinstance(rpeaks, dict): rpeaks = rpeaks["ECG_R_Peaks"] method = method.lower() # remove capitalised letters if method in ["peak", "peaks", "derivative", "gradient"]: waves = _ecg_delineator_peak( ecg_cleaned, rpeaks=rpeaks, sampling_rate=sampling_rate ) elif method in ["cwt", "continuous wavelet transform"]: waves = _ecg_delineator_cwt( ecg_cleaned, rpeaks=rpeaks, sampling_rate=sampling_rate ) elif method in ["dwt", "discrete wavelet transform"]: waves = _dwt_ecg_delineator(ecg_cleaned, rpeaks, sampling_rate=sampling_rate) elif method in ["prominence", "peak-prominence", "emrich", "emrich2024"]: waves = _prominence_ecg_delineator(ecg_cleaned, rpeaks=rpeaks, sampling_rate=sampling_rate, **kwargs) else: raise ValueError( "NeuroKit error: ecg_delineate(): 'method' should be one of 'peak', 'prominence'," "'cwt' or 'dwt'." ) # Ensure that all indices are not larger than ECG signal indices for _, value in waves.items(): if value[-1] >= len(ecg_cleaned): value[-1] = np.nan # Remove NaN in Peaks, Onsets, and Offsets waves_noNA = waves.copy() for feature in waves_noNA.keys(): waves_noNA[feature] = [ int(x) for x in waves_noNA[feature] if ~np.isnan(x) and x > 0 ] instant_peaks = signal_formatpeaks(waves_noNA, desired_length=len(ecg_cleaned)) signals = instant_peaks waves_sanitized = {} for feature, values in waves.items(): waves_sanitized[feature] = [x for x in values if x > 0 or x is np.nan] if show is True: _ecg_delineate_plot( ecg_cleaned, rpeaks=rpeaks, signals=signals, signal_features_type=show_type, sampling_rate=sampling_rate, **kwargs ) if check is True: waves_sanitized = _ecg_delineate_check(waves_sanitized, rpeaks) return signals, waves_sanitized
# ============================================================================= # WAVELET METHOD (DWT) # ============================================================================= def _dwt_resample_points(peaks, sampling_rate, desired_sampling_rate): """Resample given points to a different sampling rate.""" if isinstance( peaks, np.ndarray ): # peaks are passed in from previous processing steps # Prevent overflow by converting to np.int64 (peaks might be passed in containing np.int32). peaks = peaks.astype(dtype=np.int64) elif isinstance(peaks, list): # peaks returned from internal functions # Cannot be converted to int since list might contain np.nan. Automatically cast to np.float64 if list contains np.nan. peaks = np.array(peaks) peaks_resample = peaks * desired_sampling_rate / sampling_rate peaks_resample = [ np.nan if np.isnan(x) else int(x) for x in peaks_resample.tolist() ] return peaks_resample def _dwt_ecg_delineator(ecg, rpeaks, sampling_rate, analysis_sampling_rate=2000): """Delinate ecg signal using discrete wavelet transforms. Parameters ---------- ecg : Union[list, np.array, pd.Series] The cleaned ECG channel as returned by `ecg_clean()`. rpeaks : Union[list, np.array, pd.Series] The samples at which R-peaks occur. Accessible with the key "ECG_R_Peaks" in the info dictionary returned by `ecg_findpeaks()`. sampling_rate : int The sampling frequency of `ecg_signal` (in Hz, i.e., samples/second). analysis_sampling_rate : int The sampling frequency for analysis (in Hz, i.e., samples/second). Returns -------- dict Dictionary of the points. """ # No dwt defined method for Q and S peak # Adopting manual method from "peak" method qpeaks = [] speaks = [] heartbeats = ecg_segment(ecg, rpeaks, sampling_rate=sampling_rate) for i, rpeak in enumerate(rpeaks): heartbeat = heartbeats[str(i + 1)] # Get index of R peaks R = heartbeat.index.get_loc( np.min(heartbeat.index.values[heartbeat.index.values > 0]) ) # Q wave Q_index, Q = _ecg_delineator_peak_Q(rpeak, heartbeat, R) qpeaks.append(Q_index) # S wave S_index, S = _ecg_delineator_peak_S(rpeak, heartbeat) speaks.append(S_index) # dwt to delineate tp waves, onsets, offsets and qrs ontsets and offsets ecg = signal_resample( ecg, sampling_rate=sampling_rate, desired_sampling_rate=analysis_sampling_rate ) dwtmatr = _dwt_compute_multiscales(ecg, 9) # # only for debugging # for idx in [0, 1, 2, 3]: # plt.plot(dwtmatr[idx + 3], label=f'W[{idx}]') # plt.plot(ecg, '--') # plt.legend() # plt.grid(True) # plt.show() rpeaks_resampled = _dwt_resample_points( rpeaks, sampling_rate, analysis_sampling_rate ) qpeaks_resampled = _dwt_resample_points( qpeaks, sampling_rate, analysis_sampling_rate ) tpeaks, ppeaks = _dwt_delineate_tp_peaks( ecg, rpeaks_resampled, dwtmatr, sampling_rate=analysis_sampling_rate ) qrs_onsets, qrs_offsets = _dwt_delineate_qrs_bounds( rpeaks_resampled, dwtmatr, ppeaks, tpeaks, qpeaks_resampled, sampling_rate=analysis_sampling_rate, ) ponsets, poffsets = _dwt_delineate_tp_onsets_offsets( ppeaks, rpeaks_resampled, dwtmatr, sampling_rate=analysis_sampling_rate ) tonsets, toffsets = _dwt_delineate_tp_onsets_offsets( tpeaks, rpeaks_resampled, dwtmatr, sampling_rate=analysis_sampling_rate, onset_weight=0.6, duration_onset=0.6, ) return dict( ECG_P_Peaks=_dwt_resample_points( ppeaks, analysis_sampling_rate, desired_sampling_rate=sampling_rate ), ECG_P_Onsets=_dwt_resample_points( ponsets, analysis_sampling_rate, desired_sampling_rate=sampling_rate ), ECG_P_Offsets=_dwt_resample_points( poffsets, analysis_sampling_rate, desired_sampling_rate=sampling_rate ), ECG_Q_Peaks=qpeaks, ECG_R_Onsets=_dwt_resample_points( qrs_onsets, analysis_sampling_rate, desired_sampling_rate=sampling_rate ), ECG_R_Offsets=_dwt_resample_points( qrs_offsets, analysis_sampling_rate, desired_sampling_rate=sampling_rate ), ECG_S_Peaks=speaks, ECG_T_Peaks=_dwt_resample_points( tpeaks, analysis_sampling_rate, desired_sampling_rate=sampling_rate ), ECG_T_Onsets=_dwt_resample_points( tonsets, analysis_sampling_rate, desired_sampling_rate=sampling_rate ), ECG_T_Offsets=_dwt_resample_points( toffsets, analysis_sampling_rate, desired_sampling_rate=sampling_rate ), ) def _dwt_adjust_parameters(rpeaks, sampling_rate, duration=None, target=None): average_rate = np.median(signal_rate(peaks=rpeaks, sampling_rate=sampling_rate)) if target == "degree": # adjust defree of dwt by sampling_rate and HR scale_factor = (sampling_rate / 250) / (average_rate / 60) return int(np.log2(scale_factor)) elif target == "duration": # adjust duration of search by HR return np.round(duration * (60 / average_rate), 3) def _dwt_delineate_tp_peaks( ecg, rpeaks, dwtmatr, sampling_rate=250, qrs_width=0.13, p2r_duration=0.2, rt_duration=0.25, degree_tpeak=3, degree_ppeak=2, epsilon_T_weight=0.25, epsilon_P_weight=0.02, ): """ Parameters ---------- ecg : Union[list, np.array, pd.Series] The cleaned ECG channel as returned by `ecg_clean()`. rpeaks : Union[list, np.array, pd.Series] The samples at which R-peaks occur. Accessible with the key "ECG_R_Peaks" in the info dictionary returned by `ecg_findpeaks()`. dwtmatr : np.array Output of `_dwt_compute_multiscales()`. Multiscales of wavelet transform. sampling_rate : int The sampling frequency of `ecg_signal` (in Hz, i.e., samples/second). qrs_width : int Approximate duration of qrs in seconds. Default to 0.13 seconds. p2r_duration : int Approximate duration from P peaks to R peaks in seconds. rt_duration : int Approximate duration from R peaks to T peaks in secons. degree_tpeak : int Wavelet transform of scales 2**3. degree_tpeak : int Wavelet transform of scales 2**2. epsilon_T_weight : int Epsilon of RMS value of wavelet transform. Appendix (A.3). epsilon_P_weight : int Epsilon of RMS value of wavelet transform. Appendix (A.4). """ srch_bndry = int(0.5 * qrs_width * sampling_rate) degree_add = _dwt_adjust_parameters(rpeaks, sampling_rate, target="degree") # sanitize search duration by HR p2r_duration = _dwt_adjust_parameters( rpeaks, sampling_rate, duration=p2r_duration, target="duration" ) rt_duration = _dwt_adjust_parameters( rpeaks, sampling_rate, duration=rt_duration, target="duration" ) tpeaks = [] for rpeak_ in rpeaks: if np.isnan(rpeak_): tpeaks.append(np.nan) continue # search for T peaks from R peaks srch_idx_start = rpeak_ + srch_bndry srch_idx_end = rpeak_ + 2 * int(rt_duration * sampling_rate) dwt_local = dwtmatr[degree_tpeak + degree_add, srch_idx_start:srch_idx_end] if len(dwt_local) == 0: tpeaks.append(np.nan) continue height = epsilon_T_weight * np.sqrt(np.mean(np.square(dwt_local))) ecg_local = ecg[srch_idx_start:srch_idx_end] peaks, __ = scipy.signal.find_peaks(np.abs(dwt_local), height=height) peaks = list( filter(lambda p: np.abs(dwt_local[p]) > 0.025 * max(dwt_local), peaks) ) # pylint: disable=W0640 if dwt_local[0] > 0: # just append peaks = [0] + peaks # detect morphology candidate_peaks = [] candidate_peaks_scores = [] for idx_peak, idx_peak_nxt in zip(peaks[:-1], peaks[1:]): correct_sign = ( dwt_local[idx_peak] > 0 and dwt_local[idx_peak_nxt] < 0 ) # pylint: disable=R1716 if correct_sign: idx_zero = ( signal_zerocrossings(dwt_local[idx_peak : idx_peak_nxt + 1])[0] + idx_peak ) # This is the score assigned to each peak. The peak with the highest score will be # selected. score = ecg_local[idx_zero] - ( float(idx_zero) / sampling_rate - (rt_duration - 0.5 * qrs_width) ) candidate_peaks.append(idx_zero) candidate_peaks_scores.append(score) if not candidate_peaks: tpeaks.append(np.nan) continue tpeaks.append( candidate_peaks[np.argmax(candidate_peaks_scores)] + srch_idx_start ) ppeaks = [] for rpeak in rpeaks: if np.isnan(rpeak): ppeaks.append(np.nan) continue # search for P peaks from Rpeaks srch_idx_start = rpeak - 2 * int(p2r_duration * sampling_rate) srch_idx_end = rpeak - srch_bndry dwt_local = dwtmatr[degree_ppeak + degree_add, srch_idx_start:srch_idx_end] if len(dwt_local) == 0: ppeaks.append(np.nan) continue height = epsilon_P_weight * np.sqrt(np.mean(np.square(dwt_local))) ecg_local = ecg[srch_idx_start:srch_idx_end] peaks, __ = scipy.signal.find_peaks(np.abs(dwt_local), height=height) peaks = list( filter(lambda p: np.abs(dwt_local[p]) > 0.025 * max(dwt_local), peaks) ) if dwt_local[0] > 0: # just append peaks = [0] + peaks # detect morphology candidate_peaks = [] candidate_peaks_scores = [] for idx_peak, idx_peak_nxt in zip(peaks[:-1], peaks[1:]): correct_sign = ( dwt_local[idx_peak] > 0 and dwt_local[idx_peak_nxt] < 0 ) # pylint: disable=R1716 if correct_sign: idx_zero = ( signal_zerocrossings(dwt_local[idx_peak : idx_peak_nxt + 1])[0] + idx_peak ) # This is the score assigned to each peak. The peak with the highest score will be # selected. score = ecg_local[idx_zero] - abs( float(idx_zero) / sampling_rate - p2r_duration ) # Minus p2r because of the srch_idx_start candidate_peaks.append(idx_zero) candidate_peaks_scores.append(score) if not candidate_peaks: ppeaks.append(np.nan) continue ppeaks.append( candidate_peaks[np.argmax(candidate_peaks_scores)] + srch_idx_start ) return tpeaks, ppeaks def _dwt_delineate_tp_onsets_offsets( peaks, rpeaks, dwtmatr, sampling_rate=250, duration_onset=0.3, duration_offset=0.3, onset_weight=0.4, offset_weight=0.4, degree_onset=2, degree_offset=2, ): # sanitize search duration by HR duration_onset = _dwt_adjust_parameters( rpeaks, sampling_rate, duration=duration_onset, target="duration" ) duration_offset = _dwt_adjust_parameters( rpeaks, sampling_rate, duration=duration_offset, target="duration" ) degree = _dwt_adjust_parameters(rpeaks, sampling_rate, target="degree") onsets = [] offsets = [] for i in range(len(peaks)): # pylint: disable=C0200 # look for onsets srch_idx_start = peaks[i] - int(duration_onset * sampling_rate) srch_idx_end = peaks[i] if srch_idx_start is np.nan or srch_idx_end is np.nan: onsets.append(np.nan) continue dwt_local = dwtmatr[degree_onset + degree, srch_idx_start:srch_idx_end] onset_slope_peaks, __ = scipy.signal.find_peaks(dwt_local) if len(onset_slope_peaks) == 0: onsets.append(np.nan) continue epsilon_onset = onset_weight * dwt_local[onset_slope_peaks[-1]] if not (dwt_local[: onset_slope_peaks[-1]] < epsilon_onset).any(): onsets.append(np.nan) continue candidate_onsets = np.where(dwt_local[: onset_slope_peaks[-1]] < epsilon_onset)[ 0 ] onsets.append(candidate_onsets[-1] + srch_idx_start) # # only for debugging # events_plot([candidate_onsets, onset_slope_peaks], dwt_local) # plt.plot(ecg[srch_idx_start: srch_idx_end], '--', label='ecg') # plt.show() for i in range(len(peaks)): # pylint: disable=C0200 # look for offset srch_idx_start = peaks[i] srch_idx_end = peaks[i] + int(duration_offset * sampling_rate) if srch_idx_start is np.nan or srch_idx_end is np.nan: offsets.append(np.nan) continue dwt_local = dwtmatr[degree_offset + degree, srch_idx_start:srch_idx_end] offset_slope_peaks, __ = scipy.signal.find_peaks(-dwt_local) if len(offset_slope_peaks) == 0: offsets.append(np.nan) continue epsilon_offset = -offset_weight * dwt_local[offset_slope_peaks[0]] if not (-dwt_local[offset_slope_peaks[0] :] < epsilon_offset).any(): offsets.append(np.nan) continue candidate_offsets = ( np.where(-dwt_local[offset_slope_peaks[0] :] < epsilon_offset)[0] + offset_slope_peaks[0] ) offsets.append(candidate_offsets[0] + srch_idx_start) # # only for debugging # events_plot([candidate_offsets, offset_slope_peaks], dwt_local) # plt.plot(ecg[srch_idx_start: srch_idx_end], '--', label='ecg') # plt.show() return onsets, offsets def _dwt_delineate_qrs_bounds( rpeaks, dwtmatr, ppeaks, tpeaks, qpeaks, sampling_rate=250 ): degree = _dwt_adjust_parameters(rpeaks, sampling_rate, target="degree") onsets = [] for i in range(len(qpeaks)): # pylint: disable=C0200 # look for onsets srch_idx_start = ppeaks[i] srch_idx_end = qpeaks[i] if srch_idx_start is np.nan or srch_idx_end is np.nan: onsets.append(np.nan) continue dwt_local = dwtmatr[2 + degree, srch_idx_start:srch_idx_end] onset_slope_peaks, __ = scipy.signal.find_peaks(-dwt_local) if len(onset_slope_peaks) == 0: onsets.append(np.nan) continue epsilon_onset = 0.5 * -dwt_local[onset_slope_peaks[-1]] if not (-dwt_local[: onset_slope_peaks[-1]] < epsilon_onset).any(): onsets.append(np.nan) continue candidate_onsets = np.where( -dwt_local[: onset_slope_peaks[-1]] < epsilon_onset )[0] onsets.append(candidate_onsets[-1] + srch_idx_start) # only for debugging # import neurokit as nk # events_plot(candidate_onsets, -dwt_local) # plt.plot(ecg[srch_idx_start: srch_idx_end], '--', label='ecg') # plt.legend() # plt.show() offsets = [] for i in range(len(rpeaks)): # pylint: disable=C0200 # look for offsets srch_idx_start = rpeaks[i] srch_idx_end = tpeaks[i] if srch_idx_start is np.nan or srch_idx_end is np.nan: offsets.append(np.nan) continue dwt_local = dwtmatr[2 + degree, srch_idx_start:srch_idx_end] onset_slope_peaks, __ = scipy.signal.find_peaks(dwt_local) if len(onset_slope_peaks) == 0: offsets.append(np.nan) continue epsilon_offset = 0.5 * dwt_local[onset_slope_peaks[0]] if not (dwt_local[onset_slope_peaks[0] :] < epsilon_offset).any(): offsets.append(np.nan) continue candidate_offsets = ( np.where(dwt_local[onset_slope_peaks[0] :] < epsilon_offset)[0] + onset_slope_peaks[0] ) offsets.append(candidate_offsets[0] + srch_idx_start) # # only for debugging # events_plot(candidate_offsets, dwt_local) # plt.plot(ecg[srch_idx_start: srch_idx_end], '--', label='ecg') # plt.legend() # plt.show() return onsets, offsets def _dwt_compute_multiscales(ecg: np.ndarray, max_degree): """Return multiscales wavelet transforms.""" def _apply_H_filter(signal_i, power=0): zeros = np.zeros(2**power - 1) timedelay = 2**power banks = np.r_[ 1.0 / 8, zeros, 3.0 / 8, zeros, 3.0 / 8, zeros, 1.0 / 8, ] signal_f = scipy.signal.convolve(signal_i, banks, mode="full") signal_f[:-timedelay] = signal_f[timedelay:] # timeshift: 2 steps return signal_f def _apply_G_filter(signal_i, power=0): zeros = np.zeros(2**power - 1) timedelay = 2**power banks = np.r_[2, zeros, -2] signal_f = scipy.signal.convolve(signal_i, banks, mode="full") signal_f[:-timedelay] = signal_f[timedelay:] # timeshift: 1 step return signal_f dwtmatr = [] intermediate_ret = np.array(ecg) for deg in range(max_degree): S_deg = _apply_G_filter(intermediate_ret, power=deg) T_deg = _apply_H_filter(intermediate_ret, power=deg) dwtmatr.append(S_deg) intermediate_ret = np.array(T_deg) dwtmatr = [ arr[: len(ecg)] for arr in dwtmatr ] # rescale transforms to the same length return np.array(dwtmatr) # ============================================================================= # WAVELET METHOD (CWT) # ============================================================================= def _ecg_delineator_cwt(ecg, rpeaks=None, sampling_rate=1000): # P-Peaks and T-Peaks tpeaks, ppeaks = _peaks_delineator(ecg, rpeaks, sampling_rate=sampling_rate) # qrs onsets and offsets qrs_onsets, qrs_offsets = _onset_offset_delineator( ecg, rpeaks, peak_type="rpeaks", sampling_rate=sampling_rate ) # ppeaks onsets and offsets p_onsets, p_offsets = _onset_offset_delineator( ecg, ppeaks, peak_type="ppeaks", sampling_rate=sampling_rate ) # tpeaks onsets and offsets t_onsets, t_offsets = _onset_offset_delineator( ecg, tpeaks, peak_type="tpeaks", sampling_rate=sampling_rate ) # No dwt defined method for Q and S peak # Adopting manual method from "peak" method q_peaks = [] s_peaks = [] heartbeats = ecg_segment(ecg, rpeaks, sampling_rate=sampling_rate) for i, rpeak in enumerate(rpeaks): heartbeat = heartbeats[str(i + 1)] # Get index of R peaks R = heartbeat.index.get_loc( np.min(heartbeat.index.values[heartbeat.index.values > 0]) ) # Q wave Q_index, Q = _ecg_delineator_peak_Q(rpeak, heartbeat, R) q_peaks.append(Q_index) # S wave S_index, S = _ecg_delineator_peak_S(rpeak, heartbeat) s_peaks.append(S_index) # Return info dictionary return { "ECG_P_Onsets": p_onsets, "ECG_P_Peaks": ppeaks, "ECG_P_Offsets": p_offsets, "ECG_Q_Peaks": q_peaks, "ECG_R_Onsets": qrs_onsets, "ECG_R_Offsets": qrs_offsets, "ECG_S_Peaks": s_peaks, "ECG_T_Onsets": t_onsets, "ECG_T_Peaks": tpeaks, "ECG_T_Offsets": t_offsets, } # ============================================================================= # PROMINENCE METHOD (Emrich et al., 2024) # ============================================================================= def _prominence_ecg_delineator(ecg, rpeaks=None, sampling_rate=1000, **kwargs): # pysiology-informed boundaries in milliseconds, adapt if needed max_qrs_interval = int(kwargs.get("max_qrs_interval", 180) * sampling_rate / 1000) max_pr_interval = int(kwargs.get("max_pr_interval", 300) * sampling_rate / 1000) max_r_rise_time = int(kwargs.get("max_r_rise_time", 120) * sampling_rate / 1000) typical_st_segment = int(kwargs.get("typical_st_segment", 150) * sampling_rate / 1000) # max basepoint intervals max_p_basepoint_interval = int(kwargs.get("max_p_basepoint_interval", 100) * sampling_rate / 1000) max_r_basepoint_interval = int(kwargs.get("max_r_basepoint_interval", 100) * sampling_rate / 1000) max_t_basepoint_interval = int(kwargs.get("max_t_basepoint_interval", 200) * sampling_rate / 1000) waves = { "ECG_P_Onsets": [], "ECG_P_Peaks": [], "ECG_P_Offsets": [], "ECG_Q_Peaks": [], "ECG_R_Onsets": [], "ECG_R_Offsets": [], "ECG_S_Peaks": [], "ECG_T_Onsets": [], "ECG_T_Peaks": [], "ECG_T_Offsets": [], } # calculate RR intervals rr = np.diff(rpeaks) rr = np.insert(rr, 0, min(rr[0], 2 * rpeaks[0])) rr = np.insert(rr, -1, min(rr[-1], 2 * rpeaks[-1])) # iterate over all beats left = 0 for i in range(len(rpeaks)): # 1. split signal into segments rpeak_pos = min(rpeaks[i], rr[i] // 2) left = rpeaks[i] - rpeak_pos right = rpeaks[i] + rr[i + 1] // 2 ecg_seg = ecg[left:right] current_wave = { "ECG_R_Peaks": rpeak_pos, } # 2. find local extrema in signal local_maxima = scipy.signal.find_peaks(ecg_seg)[0] local_minima = scipy.signal.find_peaks(-ecg_seg)[0] local_extrema = np.concatenate((local_maxima, local_minima)) # 3. compute prominence weight weight_maxima = _calc_prominence(local_maxima, ecg_seg, current_wave["ECG_R_Peaks"]) weight_minima = _calc_prominence(local_minima, ecg_seg, current_wave["ECG_R_Peaks"], minima=True) if local_extrema.any(): # find waves _prominence_find_q_wave(weight_minima, current_wave, max_r_rise_time) _prominence_find_s_wave(ecg_seg, weight_minima, current_wave, max_qrs_interval) _prominence_find_p_wave(local_maxima, weight_maxima, current_wave, max_pr_interval) _prominence_find_t_wave(local_extrema, (weight_minima + weight_maxima), current_wave, typical_st_segment) _prominence_find_on_offsets( ecg_seg, sampling_rate, local_minima, current_wave, max_p_basepoint_interval, max_r_basepoint_interval, max_t_basepoint_interval, ) # append waves for current beat / complex for key in waves: if key == "ECG_R_Peaks": waves[key].append(int(rpeaks[i])) elif key in current_wave: waves[key].append(int(current_wave[key] + left)) else: waves[key].append(np.nan) return waves def _calc_prominence(peaks, sig, Rpeak=None, minima=False): """Returns an array of the same length as sig with prominences computed for the provided peaks. Prominence of the R-peak is excluded if the R-peak position is given. """ w = np.zeros_like(sig) if len(peaks) < 1: return w # get prominence _sig = -sig if minima else sig w[peaks] = scipy.signal.peak_prominences(_sig, peaks)[0] # optional: set rpeak prominence to zero to emphasize other peaks if Rpeak is not None: w[Rpeak] = 0 return w def _prominence_find_q_wave(weight_minima, current_wave, max_r_rise_time): if "ECG_R_Peaks" not in current_wave: return q_bound = max(current_wave["ECG_R_Peaks"] - max_r_rise_time, 0) current_wave["ECG_Q_Peaks"] = np.argmax(weight_minima[q_bound : current_wave["ECG_R_Peaks"]]) + q_bound def _prominence_find_s_wave(sig, weight_minima, current_wave, max_qrs_interval): if "ECG_Q_Peaks" not in current_wave: return s_bound = current_wave["ECG_Q_Peaks"] + max_qrs_interval s_wave = np.argmax(weight_minima[current_wave["ECG_R_Peaks"] : s_bound] > 0) + current_wave["ECG_R_Peaks"] current_wave["ECG_S_Peaks"] = ( np.argmin(sig[current_wave["ECG_R_Peaks"] : s_bound]) + current_wave["ECG_R_Peaks"] if s_wave == current_wave["ECG_R_Peaks"] else s_wave ) def _prominence_find_p_wave(local_maxima, weight_maxima, current_wave, max_pr_interval): if "ECG_Q_Peaks" not in current_wave: return p_candidates = local_maxima[ (current_wave["ECG_Q_Peaks"] - max_pr_interval <= local_maxima) & (local_maxima <= current_wave["ECG_Q_Peaks"]) ] if p_candidates.any(): current_wave["ECG_P_Peaks"] = p_candidates[np.argmax(weight_maxima[p_candidates])] def _prominence_find_t_wave(local_extrema, weight_extrema, current_wave, typical_st_segment): if "ECG_S_Peaks" not in current_wave: return t_candidates = local_extrema[(current_wave["ECG_S_Peaks"] + typical_st_segment <= local_extrema)] if t_candidates.any(): current_wave["ECG_T_Peaks"] = t_candidates[np.argmax(weight_extrema[t_candidates])] def _prominence_find_on_offsets( sig, sampling_rate, local_minima, current_wave, max_p_basepoint_interval, max_r_basepoint_interval, max_t_basepoint_interval, ): if "ECG_P_Peaks" in current_wave: _, p_on, p_off = scipy.signal.peak_prominences( sig, [current_wave["ECG_P_Peaks"]], wlen=max_p_basepoint_interval ) if not np.isnan(p_on): current_wave["ECG_P_Onsets"] = p_on[0] if not np.isnan(p_off): current_wave["ECG_P_Offsets"] = p_off[0] if "ECG_T_Peaks" in current_wave: p = -1 if np.isin(current_wave["ECG_T_Peaks"], local_minima) else 1 _, t_on, t_off = scipy.signal.peak_prominences( p * sig, [current_wave["ECG_T_Peaks"]], wlen=max_t_basepoint_interval ) if not np.isnan(t_on): current_wave["ECG_T_Onsets"] = t_on[0] if not np.isnan(t_off): current_wave["ECG_T_Offsets"] = t_off[0] # correct R-peak position towards local maxima (otherwise prominence will be falsely computed) r_pos = _correct_peak(sig, sampling_rate, current_wave["ECG_R_Peaks"]) _, r_on, r_off = scipy.signal.peak_prominences(sig, [r_pos], wlen=max_r_basepoint_interval) if not np.isnan(r_on): current_wave["ECG_R_Onsets"] = r_on[0] if not np.isnan(r_off): current_wave["ECG_R_Offsets"] = r_off[0] def _correct_peak(sig, fs, peak, window=0.02): """Correct peak towards local maxima within provided window.""" left = peak - int(window * fs) right = peak + int(window * fs) if len(sig[left:right]) > 0: return np.argmax(sig[left:right]) + left else: return peak # Internals # --------------------- def _onset_offset_delineator(ecg, peaks, peak_type="rpeaks", sampling_rate=1000): # Try loading pywt try: import pywt except ImportError: raise ImportError( "NeuroKit error: ecg_delineator(): the 'PyWavelets' module is required for this", "method to run. ", "Please install it first (`pip install PyWavelets`).", ) # first derivative of the Gaissian signal scales = np.array([1, 2, 4, 8, 16]) cwtmatr, __ = pywt.cwt(ecg, scales, "gaus1", sampling_period=1.0 / sampling_rate) half_wave_width = int(0.1 * sampling_rate) # NEED TO CHECK onsets = [] offsets = [] for index_peak in peaks: # find onset if np.isnan(index_peak): onsets.append(np.nan) offsets.append(np.nan) continue if peak_type == "rpeaks": search_window = cwtmatr[2, index_peak - half_wave_width : index_peak] prominence = 0.20 * max(search_window) height = 0.0 wt_peaks, wt_peaks_data = scipy.signal.find_peaks( search_window, height=height, prominence=prominence ) elif peak_type in ["tpeaks", "ppeaks"]: search_window = -cwtmatr[4, index_peak - half_wave_width : index_peak] prominence = 0.10 * max(search_window) height = 0.0 wt_peaks, wt_peaks_data = scipy.signal.find_peaks( search_window, height=height, prominence=prominence ) if len(wt_peaks) == 0: # print("Fail to find onset at index: %d", index_peak) onsets.append(np.nan) else: # The last peak is nfirst in (Martinez, 2004) nfirst = wt_peaks[-1] + index_peak - half_wave_width if peak_type == "rpeaks": if wt_peaks_data["peak_heights"][-1] > 0: epsilon_onset = 0.05 * wt_peaks_data["peak_heights"][-1] elif peak_type == "ppeaks": epsilon_onset = 0.50 * wt_peaks_data["peak_heights"][-1] elif peak_type == "tpeaks": epsilon_onset = 0.25 * wt_peaks_data["peak_heights"][-1] leftbase = wt_peaks_data["left_bases"][-1] + index_peak - half_wave_width if peak_type == "rpeaks": candidate_onsets = np.where(cwtmatr[2, nfirst - 100 : nfirst] < epsilon_onset)[0] + nfirst - 100 elif peak_type in ["tpeaks", "ppeaks"]: candidate_onsets = ( np.where(-cwtmatr[4, nfirst - 100 : nfirst] < epsilon_onset)[0] + nfirst - 100 ) candidate_onsets = candidate_onsets.tolist() + [leftbase] if len(candidate_onsets) == 0: onsets.append(np.nan) else: onsets.append(max(candidate_onsets)) # find offset if peak_type == "rpeaks": search_window = -cwtmatr[2, index_peak : index_peak + half_wave_width] prominence = 0.50 * max(search_window) wt_peaks, wt_peaks_data = scipy.signal.find_peaks( search_window, height=height, prominence=prominence ) elif peak_type in ["tpeaks", "ppeaks"]: search_window = cwtmatr[4, index_peak : index_peak + half_wave_width] prominence = 0.10 * max(search_window) wt_peaks, wt_peaks_data = scipy.signal.find_peaks( search_window, height=height, prominence=prominence ) if len(wt_peaks) == 0: # print("Fail to find offsets at index: %d", index_peak) offsets.append(np.nan) else: nlast = wt_peaks[0] + index_peak epsilon_offset = 0 # Default value if peak_type == "rpeaks": if wt_peaks_data["peak_heights"][0] > 0: epsilon_offset = 0.125 * wt_peaks_data["peak_heights"][0] elif peak_type == "ppeaks": epsilon_offset = 0.9 * wt_peaks_data["peak_heights"][0] elif peak_type == "tpeaks": epsilon_offset = 0.4 * wt_peaks_data["peak_heights"][0] rightbase = wt_peaks_data["right_bases"][0] + index_peak if peak_type == "rpeaks": candidate_offsets = ( np.where((-cwtmatr[2, nlast : nlast + 100]) < epsilon_offset)[0] + nlast ) elif peak_type in ["tpeaks", "ppeaks"]: candidate_offsets = ( np.where((cwtmatr[4, nlast : nlast + 100]) < epsilon_offset)[0] + nlast ) candidate_offsets = candidate_offsets.tolist() + [rightbase] if len(candidate_offsets) == 0: offsets.append(np.nan) else: offsets.append(min(candidate_offsets)) onsets = np.array(onsets, dtype="object") offsets = np.array(offsets, dtype="object") return onsets, offsets def _peaks_delineator(ecg, rpeaks, sampling_rate=1000): # Try loading pywt try: import pywt except ImportError: raise ImportError( "NeuroKit error: ecg_delineator(): the 'PyWavelets' module is required for this method to run. ", "Please install it first (`pip install PyWavelets`).", ) # first derivative of the Gaissian signal scales = np.array([1, 2, 4, 8, 16]) cwtmatr, __ = pywt.cwt(ecg, scales, "gaus1", sampling_period=1.0 / sampling_rate) qrs_duration = 0.1 search_boundary = int(0.9 * qrs_duration * sampling_rate / 2) significant_peaks_groups = [] for i in range(len(rpeaks) - 1): # search for T peaks and P peaks from R peaks start = rpeaks[i] + search_boundary end = rpeaks[i + 1] - search_boundary search_window = cwtmatr[4, start:end] height = 0.25 * np.sqrt(np.mean(np.square(search_window))) peaks_tp, heights_tp = scipy.signal.find_peaks( np.abs(search_window), height=height ) peaks_tp = peaks_tp + rpeaks[i] + search_boundary # set threshold for heights of peaks to find significant peaks in wavelet threshold = 0.125 * max(search_window) significant_peaks_tp = [] significant_peaks_tp = [ peaks_tp[j] for j in range(len(peaks_tp)) if heights_tp["peak_heights"][j] > threshold ] significant_peaks_groups.append( _find_tppeaks(ecg, significant_peaks_tp, sampling_rate=sampling_rate) ) tpeaks, ppeaks = zip(*[(g[0], g[-1]) for g in significant_peaks_groups]) tpeaks = np.array(tpeaks, dtype="object") ppeaks = np.array(ppeaks, dtype="object") return tpeaks, ppeaks def _find_tppeaks(ecg, keep_tp, sampling_rate=1000): # Try loading pywt try: import pywt except ImportError: raise ImportError( "NeuroKit error: ecg_delineator(): the 'PyWavelets' module is required for this method to run. ", "Please install it first (`pip install PyWavelets`).", ) # first derivative of the Gaissian signal scales = np.array([1, 2, 4, 8, 16]) cwtmatr, __ = pywt.cwt(ecg, scales, "gaus1", sampling_period=1.0 / sampling_rate) max_search_duration = 0.05 tppeaks = [] for index_cur, index_next in zip(keep_tp[:-1], keep_tp[1:]): # limit 1 correct_sign = ( cwtmatr[4, :][index_cur] < 0 and cwtmatr[4, :][index_next] > 0 ) # pylint: disable=R1716 # near = (index_next - index_cur) < max_wv_peak_dist #limit 2 # if near and correct_sign: if correct_sign: index_zero_cr = ( signal_zerocrossings(cwtmatr[4, :][index_cur : index_next + 1])[0] + index_cur ) nb_idx = int(max_search_duration * sampling_rate) index_max = np.argmax( ecg[index_zero_cr - nb_idx : index_zero_cr + nb_idx] ) + (index_zero_cr - nb_idx) tppeaks.append(index_max) if len(tppeaks) == 0: tppeaks = [np.nan] return tppeaks # ============================================================================= # PEAK METHOD # ============================================================================= def _ecg_delineator_peak(ecg, rpeaks=None, sampling_rate=1000): # Initialize heartbeats = ecg_segment(ecg, rpeaks, sampling_rate) Q_list = [] P_list = [] S_list = [] T_list = [] P_onsets = [] T_offsets = [] for i, rpeak in enumerate(rpeaks): heartbeat = heartbeats[str(i + 1)] # Get index of heartbeat R = heartbeat.index.get_loc( np.min(heartbeat.index.values[heartbeat.index.values > 0]) ) # Peaks ------ # Q wave Q_index, Q = _ecg_delineator_peak_Q(rpeak, heartbeat, R) Q_list.append(Q_index) # P wave P_index, P = _ecg_delineator_peak_P(rpeak, heartbeat, R, Q) P_list.append(P_index) # S wave S_index, S = _ecg_delineator_peak_S(rpeak, heartbeat) S_list.append(S_index) # T wave T_index, T = _ecg_delineator_peak_T(rpeak, heartbeat, R, S) T_list.append(T_index) # Onsets/Offsets ------ P_onsets.append(_ecg_delineator_peak_P_onset(rpeak, heartbeat, R, P)) T_offsets.append(_ecg_delineator_peak_T_offset(rpeak, heartbeat, R, T)) info = { "ECG_P_Peaks": P_list, "ECG_Q_Peaks": Q_list, "ECG_S_Peaks": S_list, "ECG_T_Peaks": T_list, "ECG_P_Onsets": P_onsets, "ECG_T_Offsets": T_offsets, } # Return info dictionary return info # Internal # -------------------------- def _ecg_delineator_peak_Q(rpeak, heartbeat, R): segment = heartbeat.loc[:0] # Select left hand side Q = signal_findpeaks( -1 * segment["Signal"], height_min=0.05 * (segment["Signal"].max() - segment["Signal"].min()), ) if len(Q["Peaks"]) == 0: return np.nan, None Q = Q["Peaks"][-1] # Select most right-hand side from_R = R - Q # Relative to R return rpeak - from_R, Q def _ecg_delineator_peak_P(rpeak, heartbeat, R, Q): if Q is None: return np.nan, None segment = heartbeat.iloc[:Q] # Select left of Q wave P = signal_findpeaks( segment["Signal"], height_min=0.05 * (segment["Signal"].max() - segment["Signal"].min()), ) if len(P["Peaks"]) == 0: return np.nan, None P = P["Peaks"][np.argmax(P["Height"])] # Select heighest from_R = R - P # Relative to R return rpeak - from_R, P def _ecg_delineator_peak_S(rpeak, heartbeat): segment = heartbeat.loc[0:] # Select right hand side S = signal_findpeaks( -segment["Signal"], height_min=0.05 * (segment["Signal"].max() - segment["Signal"].min()), ) if len(S["Peaks"]) == 0: return np.nan, None S = S["Peaks"][0] # Select most left-hand side return rpeak + S, S def _ecg_delineator_peak_T(rpeak, heartbeat, R, S): if S is None: return np.nan, None segment = heartbeat.iloc[R + S :] # Select right of S wave T = signal_findpeaks( segment["Signal"], height_min=0.05 * (segment["Signal"].max() - segment["Signal"].min()), ) if len(T["Peaks"]) == 0: return np.nan, None T = S + T["Peaks"][np.argmax(T["Height"])] # Select heighest return rpeak + T, T def _ecg_delineator_peak_P_onset(rpeak, heartbeat, R, P): if P is None: return np.nan segment = heartbeat.iloc[:P] # Select left of P wave try: signal = signal_smooth(segment["Signal"].values, size=R / 10) except TypeError: signal = segment["Signal"] if len(signal) < 2: return np.nan signal = np.gradient(np.gradient(signal)) P_onset = np.argmax(signal) from_R = R - P_onset # Relative to R return rpeak - from_R def _ecg_delineator_peak_T_offset(rpeak, heartbeat, R, T): if T is None: return np.nan segment = heartbeat.iloc[R + T :] # Select right of T wave try: signal = signal_smooth(segment["Signal"].values, size=R / 10) except TypeError: signal = segment["Signal"] if len(signal) < 2: return np.nan signal = np.gradient(np.gradient(signal)) T_offset = np.argmax(signal) return rpeak + T + T_offset # ============================================================================= # Internals # ============================================================================= def _ecg_delineate_plot( ecg_signal, rpeaks=None, signals=None, signal_features_type="all", sampling_rate=1000, window_start=-0.35, window_end=0.55, **kwargs ): """ import neurokit2 as nk import numpy as np import pandas as pd import matplotlib.pyplot as plt ecg_signal = nk.data("ecg_100hz") # Extract R-peaks locations _, rpeaks = nk.ecg_peaks(ecg_signal, sampling_rate=1000) # Delineate the ECG signal with ecg_delineate() signals, waves = nk.ecg_delineate(ecg_signal, rpeaks, sampling_rate=1000) # Plot the ECG signal with markings on ECG peaks _ecg_delineate_plot(ecg_signal, rpeaks=rpeaks, signals=signals, signal_features_type='peaks', sampling_rate=1000) # Plot the ECG signal with markings on boundaries of R peaks _ecg_delineate_plot(ecg_signal, rpeaks=rpeaks, signals=signals, signal_features_type='bound_R', sampling_rate=1000) # Plot the ECG signal with markings on boundaries of P peaks _ecg_delineate_plot(ecg_signal, rpeaks=rpeaks, signals=signals, signal_features_type='bound_P', sampling_rate=1000) # Plot the ECG signal with markings on boundaries of T peaks _ecg_delineate_plot(ecg_signal, rpeaks=rpeaks, signals=signals, signal_features_type='bound_T', sampling_rate=1000) # Plot the ECG signal with markings on all peaks and boundaries _ecg_delineate_plot(ecg_signal, rpeaks=rpeaks, signals=signals, signal_features_type='all', sampling_rate=1000) """ data = pd.DataFrame({"Signal": list(ecg_signal)}) data = pd.concat([data, signals], axis=1) # Try retrieving right column if isinstance(rpeaks, dict): rpeaks = rpeaks["ECG_R_Peaks"] # Segment the signal around the R-peaks epochs = epochs_create( data, events=rpeaks, sampling_rate=sampling_rate, epochs_start=window_start, epochs_end=window_end, ) data = epochs_to_df(epochs) data_cols = data.columns.values dfs = [] for feature in data_cols: if signal_features_type == "peaks": if any(x in str(feature) for x in ["Peak"]): df = data[feature] dfs.append(df) elif signal_features_type == "bounds_R": if any(x in str(feature) for x in ["ECG_R_Onsets", "ECG_R_Offsets"]): df = data[feature] dfs.append(df) elif signal_features_type == "bounds_T": if any(x in str(feature) for x in ["ECG_T_Onsets", "ECG_T_Offsets"]): df = data[feature] dfs.append(df) elif signal_features_type == "bounds_P": if any(x in str(feature) for x in ["ECG_P_Onsets", "ECG_P_Offsets"]): df = data[feature] dfs.append(df) elif signal_features_type == "all": if any(x in str(feature) for x in ["Peak", "Onset", "Offset"]): df = data[feature] dfs.append(df) features = pd.concat(dfs, axis=1) fig, ax = plt.subplots() data.Label = data.Label.astype(int) for label in data.Label.unique(): epoch_data = data[data.Label == label] ax.plot(epoch_data.Time, epoch_data.Signal, color="grey", alpha=0.2) for i, feature_type in enumerate(features.columns.values): # pylint: disable=W0612 event_data = data[data[feature_type] == 1.0] ax.scatter( event_data.Time, event_data.Signal, label=feature_type, alpha=0.5, s=200 ) ax.legend() return fig def _ecg_delineate_check(waves, rpeaks): """This function replaces the delineated features with np.nan if its standardized distance from R-peaks is more than 3.""" df = pd.DataFrame.from_dict(waves) features_columns = df.columns df = pd.concat([df, pd.DataFrame({"ECG_R_Peaks": rpeaks})], axis=1) # loop through all columns to calculate the z distance for column in features_columns: # pylint: disable=W0612 df = _calculate_abs_z(df, features_columns) # Replace with nan if distance > 3 for col in features_columns: for i in range(len(df)): if df["Dist_R_" + col][i] > 3: df[col][i] = np.nan # Return df without distance columns df = df[features_columns] waves = df.to_dict("list") return waves def _calculate_abs_z(df, columns): """This function helps to calculate the absolute standardized distance between R-peaks and other delineated waves features by `ecg_delineate()`""" for column in columns: df["Dist_R_" + column] = np.abs( standardize(df[column].sub(df["ECG_R_Peaks"], axis=0)) ) return df