Source code for neurokit2.eda.eda_analyze
# -*- coding: utf-8 -*-
import pandas as pd
from .eda_eventrelated import eda_eventrelated
from .eda_intervalrelated import eda_intervalrelated
[docs]
def eda_analyze(data, sampling_rate=1000, method="auto"):
"""**EDA Analysis**
Perform EDA analysis on either epochs (event-related analysis) or on longer periods of data
such as resting-state data.
Parameters
----------
data : Union[dict, pd.DataFrame]
A dictionary of epochs, containing one DataFrame per epoch, usually obtained via
`epochs_create`, or a DataFrame containing all epochs, usually obtained via
`epochs_to_df`. Can also take a DataFrame of processed signals from a longer period of
data, typically generated by `eda_process` or `bio_process`. Can also take a dict
containing sets of separate periods of data.
sampling_rate : int
The sampling frequency of the signal (in Hz, i.e., samples/second).
Defaults to 1000Hz.
method : str
Can be one of ``"event-related"`` for event-related analysis on epochs, or
``"interval-related"`` for analysis on longer periods of data. Defaults to ``"auto"`` where
the right method will be chosen based on the mean duration of the data (``"event-related"``
for duration under 10s).
Returns
-------
DataFrame
A dataframe containing the analyzed EDA features. If event-related analysis is conducted,
each epoch is indicated by the `Label` column. See :func:`eda_eventrelated` and
:func:`eda_intervalrelated` docstrings for details.
See Also
--------
.bio_process, eda_process, .epochs_create, eda_eventrelated, eda_intervalrelated
Examples
----------
* **Example 1: Data for event-related analysis**
.. ipython:: python
import neurokit2 as nk
# Download the data for event-related analysis
data = nk.data("bio_eventrelated_100hz")
# Process the data for event-related analysis
df, info = nk.bio_process(eda=data["EDA"], sampling_rate=100)
events = nk.events_find(data["Photosensor"], threshold_keep='below',
event_conditions=["Negative", "Neutral", "Neutral", "Negative"])
epochs = nk.epochs_create(df, events, sampling_rate=100, epochs_start=-0.1, epochs_end=1.9)
# Analyze
analyze_epochs = nk.eda_analyze(epochs, sampling_rate=100)
analyze_epochs
* **Example 2: Resting-state data**
.. ipython:: python
import neurokit2 as nk
# Download the resting-state data
data = nk.data("bio_resting_8min_100hz")
# Process the data
df, info = nk.eda_process(data["EDA"], sampling_rate=100)
# Analyze
analyze_df = nk.eda_analyze(df, sampling_rate=100)
analyze_df
"""
method = method.lower()
# Event-related analysis
if method in ["event-related", "event", "epoch"]:
# Sanity checks
if isinstance(data, dict):
for i in data:
colnames = data[i].columns.values
elif isinstance(data, pd.DataFrame):
colnames = data.columns.values
if len([i for i in colnames if "Label" in i]) == 0:
raise ValueError(
"NeuroKit error: eda_analyze(): Wrong input or method, we couldn't extract epochs features."
)
else:
features = eda_eventrelated(data)
# Interval-related analysis
elif method in ["interval-related", "interval", "resting-state"]:
features = eda_intervalrelated(data, sampling_rate=sampling_rate)
# Auto
elif method in ["auto"]:
if isinstance(data, dict):
for i in data:
duration = len(data[i]) / sampling_rate
if duration >= 10:
features = eda_intervalrelated(data, sampling_rate=sampling_rate)
else:
features = eda_eventrelated(data)
if isinstance(data, pd.DataFrame):
if "Label" in data.columns:
epoch_len = data["Label"].value_counts()[0]
duration = epoch_len / sampling_rate
else:
duration = len(data) / sampling_rate
if duration >= 10:
features = eda_intervalrelated(data, sampling_rate=sampling_rate)
else:
features = eda_eventrelated(data)
return features