Source code for neurokit2.eda.eda_intervalrelated

# -*- coding: utf-8 -*-
from warnings import warn

import numpy as np
import pandas as pd

from ..misc import NeuroKitWarning
from .eda_autocor import eda_autocor
from .eda_sympathetic import eda_sympathetic


[docs] def eda_intervalrelated(data, sampling_rate=1000, **kwargs): """**EDA Analysis on Interval-Related Data** Performs EDA analysis on longer periods of data (typically > 10 seconds), such as resting-state data. Parameters ---------- data : Union[dict, pd.DataFrame] A DataFrame containing the different processed signal(s) as different columns, typically generated by :func:`eda_process` or :func:`bio_process`. Can also take a dict containing sets of separately processed DataFrames. sampling_rate : int The sampling frequency of ``ecg_signal`` (in Hz, i.e., samples/second). Defaults to 1000. **kwargs Other arguments to be passed to the functions. Returns ------- DataFrame A dataframe containing the analyzed EDA features. The analyzed features consist of the following: .. codebookadd:: SCR_Peaks_N|The number of occurrences of Skin Conductance Response (SCR). SCR_Peaks_Amplitude_Mean|The mean amplitude of the SCR peak occurrences. EDA_Tonic_SD|The mean amplitude of the SCR peak occurrences. * ``"EDA_Sympathetic"``: see :func:`eda_sympathetic` (only computed if signal duration > 64 sec). * ``"EDA_Autocorrelation"``: see :func:`eda_autocor` (only computed if signal duration > 30 sec). See Also -------- .bio_process, eda_eventrelated Examples -------- .. ipython:: python import neurokit2 as nk # Download data data = nk.data("bio_resting_8min_100hz") # Process the data df, info = nk.eda_process(data["EDA"], sampling_rate=100) # Single dataframe is passed nk.eda_intervalrelated(df, sampling_rate=100) epochs = nk.epochs_create(df, events=[0, 25300], sampling_rate=100, epochs_end=20) nk.eda_intervalrelated(epochs, sampling_rate=100) """ # Format input if isinstance(data, pd.DataFrame): results = _eda_intervalrelated(data, sampling_rate=sampling_rate, **kwargs) results = pd.DataFrame.from_dict(results, orient="index").T elif isinstance(data, dict): results = {} for index in data: results[index] = {} # Initialize empty container # Add label info results[index]["Label"] = data[index]["Label"].iloc[0] results[index] = _eda_intervalrelated(data[index], results[index], sampling_rate=sampling_rate, **kwargs) results = pd.DataFrame.from_dict(results, orient="index") return results
# ============================================================================= # Internals # ============================================================================= def _eda_intervalrelated(data, output={}, sampling_rate=1000, method_sympathetic="posada", **kwargs): """Format input for dictionary.""" # Sanitize input colnames = data.columns.values # SCR Peaks if "SCR_Peaks" not in colnames: warn( "We couldn't find an `SCR_Peaks` column. Returning NaN for N peaks.", category=NeuroKitWarning, ) output["SCR_Peaks_N"] = np.nan else: output["SCR_Peaks_N"] = np.nansum(data["SCR_Peaks"].values) # Peak amplitude if "SCR_Amplitude" not in colnames: warn( "We couldn't find an `SCR_Amplitude` column. Returning NaN for peak amplitude.", category=NeuroKitWarning, ) output["SCR_Peaks_Amplitude_Mean"] = np.nan else: peaks_idx = data["SCR_Peaks"] == 1 # Mean amplitude is only computed over peaks. If no peaks, return NaN if peaks_idx.sum() > 0: output["SCR_Peaks_Amplitude_Mean"] = np.nanmean(data[peaks_idx]["SCR_Amplitude"].values) else: output["SCR_Peaks_Amplitude_Mean"] = np.nan # Get variability of tonic if "EDA_Tonic" in colnames: output["EDA_Tonic_SD"] = np.nanstd(data["EDA_Tonic"].values) # EDA Sympathetic output.update({"EDA_Sympathetic": np.nan, "EDA_SympatheticN": np.nan}) # Default values if len(data) > sampling_rate * 64: if "EDA_Clean" in colnames: output.update( eda_sympathetic( data["EDA_Clean"], sampling_rate=sampling_rate, method=method_sympathetic, ) ) elif "EDA_Raw" in colnames: # If not clean signal, use raw output.update( eda_sympathetic( data["EDA_Raw"], sampling_rate=sampling_rate, method=method_sympathetic, ) ) # EDA autocorrelation output.update({"EDA_Autocorrelation": np.nan}) # Default values if len(data) > sampling_rate * 30: # 30 seconds minimum (NOTE: somewhat arbitrary) if "EDA_Clean" in colnames: output["EDA_Autocorrelation"] = eda_autocor(data["EDA_Clean"], sampling_rate=sampling_rate, **kwargs) elif "EDA_Raw" in colnames: # If not clean signal, use raw output["EDA_Autocorrelation"] = eda_autocor(data["EDA_Raw"], sampling_rate=sampling_rate, **kwargs) return output