Source code for neurokit2.eda.eda_process

# -*- coding: utf-8 -*-
import pandas as pd

from ..misc.report import create_report
from ..signal import signal_sanitize
from .eda_clean import eda_clean
from .eda_methods import eda_methods
from .eda_peaks import eda_peaks
from .eda_phasic import eda_phasic
from .eda_plot import eda_plot


[docs] def eda_process( eda_signal, sampling_rate=1000, method="neurokit", report=None, **kwargs ): """**Process Electrodermal Activity (EDA)** Convenience function that automatically processes electrodermal activity (EDA) signal. Parameters ---------- eda_signal : Union[list, np.array, pd.Series] The raw EDA signal. sampling_rate : int The sampling frequency of ``"eda_signal"`` (in Hz, i.e., samples/second). method : str The processing pipeline to apply. Can be one of ``"biosppy"`` or ``"neurokit"`` (default). report : str The filename of a report containing description and figures of processing (e.g. ``"myreport.html"``). Needs to be supplied if a report file should be generated. Defaults to ``None``. Can also be ``"text"`` to just print the text in the console without saving anything. **kwargs Other arguments to be passed to specific methods. For more information, see :func:`.rsp_methods`. Returns ------- signals : DataFrame A DataFrame of same length as ``"eda_signal"`` containing the following columns: .. codebookadd:: EDA_Raw|The raw signal. EDA_Clean|The cleaned signal. EDA_Tonic|The tonic component of the signal, or the Tonic Skin Conductance Level (SCL). EDA_Phasic|The phasic component of the signal, or the Phasic Skin Conductance Response (SCR). SCR_Onsets|The samples at which the onsets of the peaks occur, marked as "1" in a list of zeros. SCR_Peaks|The samples at which the peaks occur, marked as "1" in a list of zeros. SCR_Height|The SCR amplitude of the signal including the Tonic component. Note that cumulative \ effects of close-occurring SCRs might lead to an underestimation of the amplitude. SCR_Amplitude|The SCR amplitude of the signal excluding the Tonic component. SCR_RiseTime|The time taken for SCR onset to reach peak amplitude within the SCR. SCR_Recovery|The samples at which SCR peaks recover (decline) to half amplitude, marked as "1" \ in a list of zeros. info : dict A dictionary containing the information of each SCR peak (see :func:`eda_findpeaks`), as well as the signals' sampling rate. See Also -------- eda_simulate, eda_clean, eda_phasic, eda_findpeaks, eda_plot Examples -------- .. ipython:: python import neurokit2 as nk eda_signal = nk.eda_simulate(duration=30, scr_number=5, drift=0.1, noise=0) signals, info = nk.eda_process(eda_signal, sampling_rate=1000) @savefig p_eda_process.png scale=100% nk.eda_plot(signals, info) @suppress plt.close() """ # Sanitize input eda_signal = signal_sanitize(eda_signal) methods = eda_methods(sampling_rate=sampling_rate, method=method, **kwargs) # Preprocess # Clean signal eda_cleaned = eda_clean( eda_signal, sampling_rate=sampling_rate, method=methods["method_cleaning"], **methods["kwargs_cleaning"], ) if methods["method_phasic"] is None or methods["method_phasic"].lower() == "none": eda_decomposed = pd.DataFrame({"EDA_Phasic": eda_cleaned}) else: eda_decomposed = eda_phasic( eda_cleaned, sampling_rate=sampling_rate, method=methods["method_phasic"], **methods["kwargs_phasic"], ) # Find peaks peak_signal, info = eda_peaks( eda_decomposed["EDA_Phasic"].values, sampling_rate=sampling_rate, method=methods["method_peaks"], amplitude_min=0.1, **methods["kwargs_peaks"], ) info["sampling_rate"] = sampling_rate # Add sampling rate in dict info # Store signals = pd.DataFrame({"EDA_Raw": eda_signal, "EDA_Clean": eda_cleaned}) signals = pd.concat([signals, eda_decomposed, peak_signal], axis=1) if report is not None: # Generate report containing description and figures of processing if ".html" in str(report): fig = eda_plot(signals, info, static=False) else: fig = None create_report(file=report, signals=signals, info=methods, fig=fig) return signals, info