Source code for neurokit2.emg.emg_analyze

# -*- coding: utf-8 -*-
import pandas as pd

from .emg_eventrelated import emg_eventrelated
from .emg_intervalrelated import emg_intervalrelated


[docs] def emg_analyze(data, sampling_rate=1000, method="auto"): """**EMG Analysis** Performs EMG analysis on either epochs (event-related analysis) or on longer periods of data such as resting-state data. Parameters ---------- data : Union[dict, pd.DataFrame] A dictionary of epochs, containing one DataFrame per epoch, usually obtained via ``epochs_create()``, or a DataFrame containing all epochs, usually obtained via ``epochs_to_df()``. Can also take a DataFrame of processed signals from a longer period of data, typically generated by ``emg_process()`` or ``bio_process()``. Can also take a dict containing sets of separate periods of data. sampling_rate : int The sampling frequency of the signal (in Hz, i.e., samples/second). Defaults to 1000Hz. method : str Can be one of ``"event-related"`` for event-related analysis on epochs, or ``"interval-related"`` for analysis on longer periods of data. Defaults to ``auto`` where the right method will be chosen based on the mean duration of the data (``"event-related"`` for duration under 10s). Returns ------- DataFrame A dataframe containing the analyzed EMG features. If event-related analysis is conducted, each epoch is indicated by the `Label` column. See :func:`emg_eventrelated` and :func:`emg_intervalrelated` docstrings for details. See Also -------- .bio_process, emg_process, .epochs_create, emg_eventrelated, emg_intervalrelated Examples ---------- .. ipython:: python import neurokit2 as nk import pandas as pd # Example with simulated data emg = nk.emg_simulate(duration=20, sampling_rate=1000, burst_number=3) emg_signals, info = nk.emg_process(emg, sampling_rate=1000) epochs = nk.epochs_create(emg_signals, events=[3000, 6000, 9000], sampling_rate=1000, epochs_start=-0.1, epochs_end=1.9) # Event-related analysis analyze_epochs = nk.emg_analyze(epochs, method="event-related") analyze_epochs # Interval-related analysis analyze_df = nk.emg_analyze(emg_signals, method="interval-related") analyze_df """ method = method.lower() # Event-related analysis if method in ["event-related", "event", "epoch"]: # Sanity checks if isinstance(data, dict): for i in data: colnames = data[i].columns.values elif isinstance(data, pd.DataFrame): colnames = data.columns.values if len([i for i in colnames if "Label" in i]) == 0: raise ValueError( "NeuroKit error: emg_analyze(): Wrong input or method, we couldn't extract extract epochs features." ) else: features = emg_eventrelated(data) # Interval-related analysis elif method in ["interval-related", "interval", "resting-state"]: features = emg_intervalrelated(data) # Auto elif method in ["auto"]: if isinstance(data, dict): for i in data: duration = len(data[i]) / sampling_rate if duration >= 10: features = emg_intervalrelated(data) else: features = emg_eventrelated(data) if isinstance(data, pd.DataFrame): if "Label" in data.columns: epoch_len = data["Label"].value_counts()[0] duration = epoch_len / sampling_rate else: duration = len(data) / sampling_rate if duration >= 10: features = emg_intervalrelated(data) else: features = emg_eventrelated(data) return features