Source code for neurokit2.emg.emg_analyze
# -*- coding: utf-8 -*-
import pandas as pd
from .emg_eventrelated import emg_eventrelated
from .emg_intervalrelated import emg_intervalrelated
[docs]
def emg_analyze(data, sampling_rate=1000, method="auto"):
"""**EMG Analysis**
Performs EMG analysis on either epochs (event-related analysis) or on longer periods of data such as resting-state data.
Parameters
----------
data : Union[dict, pd.DataFrame]
A dictionary of epochs, containing one DataFrame per epoch, usually obtained via
``epochs_create()``, or a DataFrame containing all epochs, usually obtained via
``epochs_to_df()``. Can also take a DataFrame of processed signals from a longer period of data, typically generated by
``emg_process()`` or ``bio_process()``. Can also take a dict containing sets of separate
periods of data.
sampling_rate : int
The sampling frequency of the signal (in Hz, i.e., samples/second). Defaults to 1000Hz.
method : str
Can be one of ``"event-related"`` for event-related analysis on epochs, or
``"interval-related"`` for analysis on longer periods of data. Defaults to ``auto`` where
the right method will be chosen based on the mean duration of the data (``"event-related"`` for duration under 10s).
Returns
-------
DataFrame
A dataframe containing the analyzed EMG features. If event-related analysis is conducted,
each epoch is indicated by the `Label` column. See :func:`emg_eventrelated` and
:func:`emg_intervalrelated` docstrings for details.
See Also
--------
.bio_process, emg_process, .epochs_create, emg_eventrelated, emg_intervalrelated
Examples
----------
.. ipython:: python
import neurokit2 as nk
import pandas as pd
# Example with simulated data
emg = nk.emg_simulate(duration=20, sampling_rate=1000, burst_number=3)
emg_signals, info = nk.emg_process(emg, sampling_rate=1000)
epochs = nk.epochs_create(emg_signals, events=[3000, 6000, 9000], sampling_rate=1000,
epochs_start=-0.1, epochs_end=1.9)
# Event-related analysis
analyze_epochs = nk.emg_analyze(epochs, method="event-related")
analyze_epochs
# Interval-related analysis
analyze_df = nk.emg_analyze(emg_signals, method="interval-related")
analyze_df
"""
method = method.lower()
# Event-related analysis
if method in ["event-related", "event", "epoch"]:
# Sanity checks
if isinstance(data, dict):
for i in data:
colnames = data[i].columns.values
elif isinstance(data, pd.DataFrame):
colnames = data.columns.values
if len([i for i in colnames if "Label" in i]) == 0:
raise ValueError(
"NeuroKit error: emg_analyze(): Wrong input or method, we couldn't extract extract epochs features."
)
else:
features = emg_eventrelated(data)
# Interval-related analysis
elif method in ["interval-related", "interval", "resting-state"]:
features = emg_intervalrelated(data)
# Auto
elif method in ["auto"]:
if isinstance(data, dict):
for i in data:
duration = len(data[i]) / sampling_rate
if duration >= 10:
features = emg_intervalrelated(data)
else:
features = emg_eventrelated(data)
if isinstance(data, pd.DataFrame):
if "Label" in data.columns:
epoch_len = data["Label"].value_counts()[0]
duration = epoch_len / sampling_rate
else:
duration = len(data) / sampling_rate
if duration >= 10:
features = emg_intervalrelated(data)
else:
features = emg_eventrelated(data)
return features