Source code for neurokit2.emg.emg_process

# -*- coding: utf-8 -*-
import pandas as pd

from ..misc.report import create_report
from ..signal import signal_sanitize
from .emg_activation import emg_activation
from .emg_amplitude import emg_amplitude
from .emg_clean import emg_clean
from .emg_methods import emg_methods
from .emg_plot import emg_plot


[docs] def emg_process(emg_signal, sampling_rate=1000, report=None, **kwargs): """**Process a electromyography (EMG) signal** Convenience function that automatically processes an electromyography signal. Parameters ---------- emg_signal : Union[list, np.array, pd.Series] The raw electromyography channel. sampling_rate : int The sampling frequency of ``emg_signal`` (in Hz, i.e., samples/second). report : str The filename of a report containing description and figures of processing (e.g. ``"myreport.html"``). Needs to be supplied if a report file should be generated. Defaults to ``None``. Can also be ``"text"`` to just print the text in the console without saving anything. **kwargs Other arguments to be passed to specific methods. For more information, see :func:`.emg_methods`. Returns ------- signals : DataFrame A DataFrame of same length as ``emg_signal`` containing the following columns: .. codebookadd:: EMG_Raw|The raw EMG signal. EMG_Clean|The cleaned EMG signal. EMG_Amplitude|The signal amplitude, or the activation of the signal. EMG_Activity|The activity of the signal for which amplitude exceeds the threshold \ specified,marked as "1" in a list of zeros. EMG_Onsets|The onsets of the amplitude, marked as "1" in a list of zeros. EMG_Offsets|The offsets of the amplitude, marked as "1" in a list of zeros. info : dict A dictionary containing the information of each amplitude onset, offset, and peak activity (see :func:`emg_activation`), as well as the signals' sampling rate. See Also -------- emg_clean, emg_amplitude, emg_plot Examples -------- .. ipython:: python import neurokit2 as nk emg = nk.emg_simulate(duration=10, sampling_rate=1000, burst_number=3) signals, info = nk.emg_process(emg, sampling_rate=1000) @savefig p_emg_process1.png scale=100% nk.emg_plot(signals, info) @suppress plt.close() """ # Sanitize input emg_signal = signal_sanitize(emg_signal) methods = emg_methods(sampling_rate=sampling_rate, **kwargs) # Clean signal emg_cleaned = emg_clean( emg_signal, sampling_rate=sampling_rate, method=methods["method_cleaning"] ) # Get amplitude amplitude = emg_amplitude(emg_cleaned) # Get onsets, offsets, and periods of activity activity_signal, info = emg_activation( emg_amplitude=amplitude, emg_cleaned=emg_cleaned, sampling_rate=sampling_rate, method=methods["method_activation"], **methods["kwargs_activation"] ) info["sampling_rate"] = sampling_rate # Add sampling rate in dict info # Prepare output signals = pd.DataFrame( {"EMG_Raw": emg_signal, "EMG_Clean": emg_cleaned, "EMG_Amplitude": amplitude} ) signals = pd.concat([signals, activity_signal], axis=1) if report is not None: # Generate report containing description and figures of processing if ".html" in str(report): fig = emg_plot(signals, info, static=False) else: fig = None create_report(file=report, signals=signals, info=methods, fig=fig) return signals, info