Source code for neurokit2.eog.eog_eventrelated

# -*- coding: utf-8 -*-
from warnings import warn

import numpy as np

from ..epochs.eventrelated_utils import (
    _eventrelated_addinfo,
    _eventrelated_rate,
    _eventrelated_sanitizeinput,
    _eventrelated_sanitizeoutput,
)
from ..misc import NeuroKitWarning


[docs] def eog_eventrelated(epochs, silent=False): """**Performs event-related EOG analysis on epochs** Parameters ---------- epochs : Union[dict, pd.DataFrame] A dict containing one DataFrame per event/trial, usually obtained via :func:`.epochs_create`, or a DataFrame containing all epochs, usually obtained via :func:`.epochs_to_df`. silent : bool If True, silence possible warnings. Returns ------- DataFrame A dataframe containing the analyzed EOG features for each epoch, with each epoch indicated by the `Label` column (if not present, by the `Index` column). The analyzed features consist of the following: .. codebookadd:: EOG_Rate_Baseline|The baseline EOG rate before stimulus onset. EOG_Rate_Max|The maximum EOG rate after stimulus onset. EOG_Rate_Min|The minimum EOG rate after stimulus onset. EOG_Rate_Mean|The mean EOG rate after stimulus onset. EOG_Rate_SD|The standard deviation of the EOG rate after stimulus onset. EOG_Rate_Max_Time|The time at which maximum EOG rate occurs. EOG_Rate_Min_Time|The time at which minimum EOG rate occurs. EOG_Blinks_Presence|Marked with '1' if a blink occurs in the epoch, and '0' if not. See Also -------- events_find, epochs_create, bio_process Examples ---------- .. ipython:: python import neurokit2 as nk # Example with real data eog = nk.data('eog_100hz') # Process the data eog_signals, info = nk.bio_process(eog=eog, sampling_rate=100) epochs = nk.epochs_create(eog_signals, events=[500, 4000, 6000, 9000], sampling_rate=100, epochs_start=-0.1,epochs_end=1.9) # Analyze nk.eog_eventrelated(epochs) """ # Sanity checks epochs = _eventrelated_sanitizeinput(epochs, what="eog", silent=silent) # Extract features and build dataframe data = {} # Initialize an empty dict for i in epochs.keys(): data[i] = {} # Initialize an empty dict for the current epoch # Rate data[i] = _eventrelated_rate(epochs[i], data[i], var="EOG_Rate") # Number of blinks per epoch data[i] = _eog_eventrelated_features(epochs[i], data[i]) for x in ["EOG_Rate_Trend_Quadratic", "EOG_Rate_Trend_Linear", "EOG_Rate_Trend_R2"]: data[i].pop(x, None) # Fill with more info data[i] = _eventrelated_addinfo(epochs[i], data[i]) df = _eventrelated_sanitizeoutput(data) return df
# ============================================================================= # Internals # ============================================================================= def _eog_eventrelated_features(epoch, output={}): # Sanitize input if "EOG_Blinks" not in epoch: warn( "Input does not have an `EOG_Blinks` column." " Unable to process blink features.", category=NeuroKitWarning, ) return output if "EOG_Rate" not in epoch: warn( "Input does not have an `EOG_Rate` column." " Will skip computation of EOG rate.", category=NeuroKitWarning, ) return output # Detect whether blink exists after onset of stimulus blinks_presence = len(np.where(epoch["EOG_Blinks"][epoch.index > 0] == 1)[0]) if blinks_presence > 0: output["EOG_Blinks_Presence"] = 1 else: output["EOG_Blinks_Presence"] = 0 return output