Source code for neurokit2.eog.eog_intervalrelated

# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd


[docs] def eog_intervalrelated(data): """**EOG analysis on longer periods of data** Performs EOG analysis on longer periods of data (typically > 10 seconds), such as resting-state data. Parameters ---------- data : Union[dict, pd.DataFrame] A DataFrame containing the different processed signal(s) as different columns, typically generated by :func:`.eog_process` or :func:`.bio_process`. Can also take a dict containing sets of separately processed DataFrames. Returns ------- DataFrame A dataframe containing the analyzed EOG features. The analyzed features consist of the following: .. codebookadd:: EOG_Rate_Mean|The mean EOG value. EOG_Peaks_N|The number of blink peak occurrences. See Also -------- bio_process, eog_eventrelated Examples ---------- .. ipython:: python import neurokit2 as nk # Download data eog = nk.data('eog_200hz')['vEOG'] # Process the data df, info = nk.eog_process(eog, sampling_rate=200) # Single dataframe is passed nk.eog_intervalrelated(df) # Dictionary is passed epochs = nk.epochs_create(df, events=[0, 30000], sampling_rate=200, epochs_end=120) nk.eog_intervalrelated(epochs) """ intervals = {} # Format input if isinstance(data, pd.DataFrame): rate_cols = [col for col in data.columns if "EOG_Rate" in col] if len(rate_cols) == 1: intervals.update(_eog_intervalrelated_formatinput(data)) eog_intervals = pd.DataFrame.from_dict(intervals, orient="index").T elif isinstance(data, dict): for index in data: intervals[index] = {} # Initialize empty container # Add label info intervals[index]["Label"] = data[index]["Label"].iloc[0] # Rate and Blinks quantity intervals[index] = _eog_intervalrelated_formatinput(data[index], intervals[index]) eog_intervals = pd.DataFrame.from_dict(intervals, orient="index") return eog_intervals
# ============================================================================= # Internals # ============================================================================= def _eog_intervalrelated_formatinput(data, output={}): # Sanitize input colnames = data.columns.values if len([i for i in colnames if "EOG_Rate" in i]) == 0: raise ValueError( "NeuroKit error: eog_intervalrelated(): Wrong input," "we couldn't extract EOG rate. Please make sure" "your DataFrame contains an `EOG_Rate` column." ) if len([i for i in colnames if "EOG_Blinks" in i]) == 0: raise ValueError( "NeuroKit error: eog_intervalrelated(): Wrong input," "we couldn't extract EOG blinks. Please make sure" "your DataFrame contains an `EOG_Blinks` column." ) signal = data["EOG_Rate"].values n_blinks = len(np.where(data["EOG_Blinks"] == 1)[0]) output["EOG_Peaks_N"] = n_blinks output["EOG_Rate_Mean"] = np.mean(signal) return output