Source code for neurokit2.eog.eog_process

# -*- coding: utf-8 -*-
import pandas as pd

from ..misc import as_vector
from ..signal import signal_rate
from ..signal.signal_formatpeaks import _signal_from_indices
from .eog_clean import eog_clean
from .eog_findpeaks import eog_findpeaks


[docs] def eog_process(veog_signal, sampling_rate=1000, **kwargs): """**Process an EOG signal** Convenience function that automatically processes an EOG signal. Parameters ---------- veog_signal : Union[list, np.array, pd.Series] The raw vertical EOG channel. Note that it must be positively oriented, i.e., blinks must appear as upward peaks. sampling_rate : int The sampling frequency of :func:`.eog_signal` (in Hz, i.e., samples/second). Defaults to 1000. **kwargs Other arguments passed to other functions. Returns ------- signals : DataFrame A DataFrame of the same length as the :func:`.eog_signal` containing the following columns: .. codebookadd:: EOG_Raw|The raw signal. EOG_Clean|The cleaned signal. EOG_Blinks|The blinks marked as "1" in a list of zeros. EOG_Rate|Eye blink rate interpolated between blinks info : dict A dictionary containing the samples at which the eye blinks occur, accessible with the key ``"EOG_Blinks"`` as well as the signals' sampling rate. See Also -------- eog_clean, eog_findpeaks Examples -------- .. ipython:: python import neurokit2 as nk # Get data eog = nk.data('eog_100hz') eog_signals, info = nk.eog_process(eog, sampling_rate=100) # Plot @savefig p_eog_process.png scale=100% nk.eog_plot(eog_signals, info) @suppress plt.close() References ---------- * Agarwal, M., & Sivakumar, R. (2019, September). Blink: A Fully Automated Unsupervised Algorithm for Eye-Blink Detection in EEG Signals. In 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (pp. 1113-1121). IEEE. """ # Sanitize input eog_signal = as_vector(veog_signal) # Clean signal eog_cleaned = eog_clean(eog_signal, sampling_rate=sampling_rate, **kwargs) # Find peaks peaks = eog_findpeaks(eog_cleaned, sampling_rate=sampling_rate, **kwargs) info = {"EOG_Blinks": peaks} info["sampling_rate"] = sampling_rate # Add sampling rate in dict info # Mark (potential) blink events signal_blinks = _signal_from_indices(peaks, desired_length=len(eog_cleaned)) # Rate computation rate = signal_rate( peaks, sampling_rate=sampling_rate, desired_length=len(eog_cleaned) ) # Prepare output signals = pd.DataFrame( { "EOG_Raw": eog_signal, "EOG_Clean": eog_cleaned, "EOG_Blinks": signal_blinks, "EOG_Rate": rate, } ) return signals, info