Source code for neurokit2.events.events_create
import numpy as np
from .events_find import _events_find_label
[docs]
def events_create(event_onsets, event_durations=None, event_labels=None, event_conditions=None):
"""**Create events dictionnary from list of onsets**
Parameters
----------
event_onsets : array or list
A list of events onset.
event_durations : array or list
A list of durations. If none is passed, will take the duration
between each onset (i.e., will assume that events are consecutive).
event_labels : list
A list containing unique event identifiers. If ``None``, will use the event index number.
event_conditions : list
An optional list containing, for each event, for example the trial category, group or
experimental conditions.
Returns
----------
dict
Dict containing 3 or 4 arrays, ``"onset"`` for event onsets, ``"duration"`` for event
durations, ``"label"`` for the event identifiers and the optional ``"conditions"`` passed
to ``event_conditions``.
See Also
--------
events_plot, events_to_mne, events_find
Example
----------
.. ipython:: python
import neurokit2 as nk
events = nk.events_create(event_onsets = [500, 1500, 2500, 5000])
events
events = nk.events_create(event_onsets = [500, 1500, 2500, 5000],
event_labels=["S1", "S2", "S3", "S4"],
event_conditions=["A", "A", "B", "B"])
events
"""
if event_durations is None:
event_durations = np.diff(np.concatenate(([0], event_onsets)))
events = {"onset": event_onsets, "duration": event_durations}
events = _events_find_label(
events, event_labels=event_labels, event_conditions=event_conditions
)
return events