Source code for neurokit2.events.events_create

import numpy as np

from .events_find import _events_find_label


[docs] def events_create(event_onsets, event_durations=None, event_labels=None, event_conditions=None): """**Create events dictionnary from list of onsets** Parameters ---------- event_onsets : array or list A list of events onset. event_durations : array or list A list of durations. If none is passed, will take the duration between each onset (i.e., will assume that events are consecutive). event_labels : list A list containing unique event identifiers. If ``None``, will use the event index number. event_conditions : list An optional list containing, for each event, for example the trial category, group or experimental conditions. Returns ---------- dict Dict containing 3 or 4 arrays, ``"onset"`` for event onsets, ``"duration"`` for event durations, ``"label"`` for the event identifiers and the optional ``"conditions"`` passed to ``event_conditions``. See Also -------- events_plot, events_to_mne, events_find Example ---------- .. ipython:: python import neurokit2 as nk events = nk.events_create(event_onsets = [500, 1500, 2500, 5000]) events events = nk.events_create(event_onsets = [500, 1500, 2500, 5000], event_labels=["S1", "S2", "S3", "S4"], event_conditions=["A", "A", "B", "B"]) events """ if event_durations is None: event_durations = np.diff(np.concatenate(([0], event_onsets))) events = {"onset": event_onsets, "duration": event_durations} events = _events_find_label( events, event_labels=event_labels, event_conditions=event_conditions ) return events