Source code for neurokit2.events.events_plot

# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd


[docs] def events_plot(events, signal=None, color="red", linestyle="--"): """**Visualize Events** Plot events in signal. Parameters ---------- events : list or ndarray or dict Events onset location. Can also be a list of lists, in which case it will mark them with different colors. If a dict is passed (e.g., from :func:`events_find`), it will only plot the onsets. signal : array or DataFrame Signal array (can be a dataframe with many signals). color : str Argument passed to matplotlib plotting. linestyle : str Argument passed to matplotlib plotting. Returns ------- fig Figure representing a plot of the signal and the event markers. See Also -------- events_find Examples ---------- .. ipython:: python import neurokit2 as nk @savefig p_events_plot1.png scale=100% nk.events_plot([1, 3, 5]) @suppress plt.close() * **Example 1**: With signal .. ipython:: python signal = nk.signal_simulate(duration=4) events = nk.events_find(signal) @savefig p_events_plot2.png scale=100% nk.events_plot(events, signal) @suppress plt.close() * **Example 2**: Different events .. ipython:: python events1 = events["onset"] events2 = np.linspace(0, len(signal), 8) @savefig p_events_plot3.png scale=100% nk.events_plot([events1, events2], signal) @suppress plt.close() * **Example 3**: Conditions .. ipython:: python events = nk.events_find(signal, event_conditions=["A", "B", "A", "B"]) @savefig p_events_plot4.png scale=100% nk.events_plot(events, signal) @suppress plt.close() * **Example 4**: Different colors for all events .. ipython:: python signal = nk.signal_simulate(duration=10) events = nk.events_find(signal) events = [[i] for i in events['onset']] @savefig p_events_plot5.png scale=100% nk.events_plot(events, signal) @suppress plt.close() """ if isinstance(events, dict): if "condition" in events.keys(): events_list = [] for condition in set(events["condition"]): events_list.append( [x for x, y in zip(events["onset"], events["condition"]) if y == condition] ) events = events_list else: events = events["onset"] if signal is None: signal = np.full(events[-1] + 1, 0) if isinstance(signal, pd.DataFrame) is False: signal = pd.DataFrame({"Signal": signal}) # Plot signal(s) signal.plot() # Check if events is list of lists try: len(events[0]) is_listoflists = True except TypeError: is_listoflists = False if is_listoflists is False: # Loop through sublists for event in events: plt.axvline(event, color=color, linestyle=linestyle) else: # Convert color and style to list if isinstance(color, str): color_map = plt.get_cmap("rainbow") color = color_map(np.linspace(0, 1, num=len(events))) if isinstance(linestyle, str): linestyle = np.full(len(events), linestyle) # Loop through sublists for i, event in enumerate(events): for j in events[i]: plt.axvline(j, color=color[i], linestyle=linestyle[i], label=str(i)) # Display only one legend per event type handles, labels = plt.gca().get_legend_handles_labels() newLabels, newHandles = [], [] for handle, label in zip(handles, labels): if label not in newLabels: newLabels.append(label) newHandles.append(handle) plt.legend(newHandles, newLabels)