Source code for neurokit2.hrv.hrv_nonlinear

# -*- coding: utf-8 -*-
from warnings import warn

import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy.stats

from ..complexity import (
    complexity_lempelziv,
    entropy_approximate,
    entropy_fuzzy,
    entropy_multiscale,
    entropy_sample,
    entropy_shannon,
    fractal_correlation,
    fractal_dfa,
    fractal_higuchi,
    fractal_katz,
)
from ..misc import NeuroKitWarning, find_consecutive
from ..signal import signal_zerocrossings
from .hrv_utils import _hrv_format_input
from .intervals_utils import _intervals_successive


[docs] def hrv_nonlinear(peaks, sampling_rate=1000, show=False, **kwargs): """**Nonlinear indices of Heart Rate Variability (HRV)** This function computes non-linear indices, which include features derived from the *Poincaré plot*, as well as other :func:`.complexity` indices corresponding to entropy or fractal dimension. .. hint:: There exist many more complexity indices available in NeuroKit2, that could be applied to HRV. The :func:`.hrv_nonlinear` function only includes the most commonly used indices. Please see the documentation page for all the func:`.complexity` features. The **Poincaré plot** is a graphical representation of each NN interval plotted against its preceding NN interval. The ellipse that emerges is a visual quantification of the correlation between successive NN intervals. Basic indices derived from the Poincaré plot analysis include: * **SD1**: Standard deviation perpendicular to the line of identity. It is an index of short-term RR interval fluctuations, i.e., beat-to-beat variability. It is equivalent (although on another scale) to RMSSD, and therefore it is redundant to report correlation with both. * **SD2**: Standard deviation along the identity line. Index of long-term HRV changes. * **SD1/SD2**: ratio of *SD1* to *SD2*. Describes the ratio of short term to long term variations in HRV. * **S**: Area of ellipse described by *SD1* and *SD2* (``pi * SD1 * SD2``). It is proportional to *SD1SD2*. * **CSI**: The Cardiac Sympathetic Index (Toichi, 1997) is a measure of cardiac sympathetic function independent of vagal activity, calculated by dividing the longitudinal variability of the Poincaré plot (``4*SD2``) by its transverse variability (``4*SD1``). * **CVI**: The Cardiac Vagal Index (Toichi, 1997) is an index of cardiac parasympathetic function (vagal activity unaffected by sympathetic activity), and is equal equal to the logarithm of the product of longitudinal (``4*SD2``) and transverse variability (``4*SD1``). * **CSI_Modified**: The modified CSI (Jeppesen, 2014) obtained by dividing the square of the longitudinal variability by its transverse variability. Indices of **Heart Rate Asymmetry** (HRA), i.e., asymmetry of the Poincaré plot (Yan, 2017), include: * **GI**: Guzik's Index, defined as the distance of points above line of identity (LI) to LI divided by the distance of all points in Poincaré plot to LI except those that are located on LI. * **SI**: Slope Index, defined as the phase angle of points above LI divided by the phase angle of all points in Poincaré plot except those that are located on LI. * **AI**: Area Index, defined as the cumulative area of the sectors corresponding to the points that are located above LI divided by the cumulative area of sectors corresponding to all points in the Poincaré plot except those that are located on LI. * **PI**: Porta's Index, defined as the number of points below LI divided by the total number of points in Poincaré plot except those that are located on LI. * **SD1d** and **SD1a**: short-term variance of contributions of decelerations (prolongations of RR intervals) and accelerations (shortenings of RR intervals), respectively (Piskorski, 2011) * **C1d** and **C1a**: the contributions of heart rate decelerations and accelerations to short-term HRV, respectively (Piskorski, 2011). * **SD2d** and **SD2a**: long-term variance of contributions of decelerations (prolongations of RR intervals) and accelerations (shortenings of RR intervals), respectively (Piskorski, 2011). * **C2d** and **C2a**: the contributions of heart rate decelerations and accelerations to long-term HRV, respectively (Piskorski, 2011). * **SDNNd** and **SDNNa**: total variance of contributions of decelerations (prolongations of RR intervals) and accelerations (shortenings of RR intervals), respectively (Piskorski, 2011). * **Cd** and **Ca**: the total contributions of heart rate decelerations and accelerations to HRV. Indices of **Heart Rate Fragmentation** (Costa, 2017) include: * **PIP**: Percentage of inflection points of the RR intervals series. * **IALS**: Inverse of the average length of the acceleration/deceleration segments. * **PSS**: Percentage of short segments. * **PAS**: Percentage of NN intervals in alternation segments. Indices of **Complexity** and **Fractal Physiology** include: * **ApEn**: See :func:`.entropy_approximate`. * **SampEn**: See :func:`.entropy_sample`. * **ShanEn**: See :func:`.entropy_shannon`. * **FuzzyEn**: See :func:`.entropy_fuzzy`. * **MSEn**: See :func:`.entropy_multiscale`. * **CMSEn**: See :func:`.entropy_multiscale`. * **RCMSEn**: See :func:`.entropy_multiscale`. * **CD**: See :func:`.fractal_correlation`. * **HFD**: See :func:`.fractal_higuchi` (with ``kmax`` set to ``"default"``). * **KFD**: See :func:`.fractal_katz`. * **LZC**: See :func:`.complexity_lempelziv`. * **DFA_alpha1**: The monofractal detrended fluctuation analysis of the HR signal, corresponding to short-term correlations. See :func:`.fractal_dfa`. * **DFA_alpha2**: The monofractal detrended fluctuation analysis of the HR signal, corresponding to long-term correlations. See :func:`.fractal_dfa`. * **MFDFA indices**: Indices related to the :func:`multifractal spectrum <.fractal_dfa()>`. Other non-linear indices include those based on Recurrence Quantification Analysis (RQA), but are not implemented yet (but soon). .. tip:: We strongly recommend checking our open-access paper `Pham et al. (2021) <https://doi.org/10.3390/s21123998>`_ on HRV indices, as well as `Lau et al. (2021) <https://psyarxiv.com/f8k3x/>`_ on complexity, for more information. Parameters ---------- peaks : dict Samples at which cardiac extrema (i.e., R-peaks, systolic peaks) occur. Can be a list of indices or the output(s) of other functions such as :func:`.ecg_peaks`, :func:`.ppg_peaks`, :func:`.ecg_process` or :func:`.bio_process`. Can also be a dict containing the keys `RRI` and `RRI_Time` to directly pass the R-R intervals and their timestamps, respectively. sampling_rate : int, optional Sampling rate (Hz) of the continuous cardiac signal in which the peaks occur. Should be at least twice as high as the highest frequency in vhf. By default 1000. show : bool, optional If ``True``, will return a Poincaré plot, a scattergram, which plots each RR interval against the next successive one. The ellipse centers around the average RR interval. By default ``False``. **kwargs Other arguments to be passed into :func:`.fractal_dfa` and :func:`.fractal_correlation`. Returns ------- DataFrame DataFrame consisting of the computed non-linear HRV metrics, which includes: .. codebookadd:: HRV_SD1|Standard deviation perpendicular to the line of identity. It is an index of \ short-term RR interval fluctuations, i.e., beat-to-beat variability. It is \ equivalent (although on another scale) to RMSSD, and therefore it is redundant to \ report correlation with both. HRV_SD2|Standard deviation along the identity line. Index of long-term HRV changes. HRV_SD1SD2|Ratio of SD1 to SD2. Describes the ratio of short term to long term \ variations in HRV. HRV_S|Area of ellipse described by *SD1* and *SD2* (``pi * SD1 * SD2``). It is \ proportional to *SD1SD2*. HRV_CSI|The Cardiac Sympathetic Index (Toichi, 1997) is a measure of cardiac \ sympathetic function independent of vagal activity, calculated by dividing the \ longitudinal variability of the Poincaré plot (``4*SD2``) by its transverse \ variability (``4*SD1``). HRV_CVI|The Cardiac Vagal Index (Toichi, 1997) is an index of cardiac parasympathetic \ function (vagal activity unaffected by sympathetic activity), and is equal equal \ to the logarithm of the product of longitudinal (``4*SD2``) and transverse \ variability (``4*SD1``). HRV_CSI_Modified|The modified CSI (Jeppesen, 2014) obtained by dividing the square of \ the longitudinal variability by its transverse variability. HRV_GI|Guzik's Index, defined as the distance of points above line of identity (LI) to \ LI divided by the distance of all points in Poincaré plot to LI except those that \ are located on LI. HRV_SI|Slope Index, defined as the phase angle of points above LI divided by the phase \ angle of all points in Poincaré plot except those that are located on LI. HRV_AI|Area Index, defined as the cumulative area of the sectors corresponding to the \ points that are located above LI divided by the cumulative area of sectors \ corresponding to all points in the Poincaré plot except those that are located \ on LI. HRV_PI|Porta's Index, defined as the number of points below LI divided by the total \ number of points in Poincaré plot except those that are located on LI. HRV_SD1a|Short-term variance of contributions of decelerations (prolongations of RR \ intervals), (Piskorski, 2011). HRV_SD1d|Short-term variance of contributions of accelerations (shortenings of RR \ intervals), (Piskorski, 2011). HRV_C1a|The contributions of heart rate accelerations to short-term HRV, (Piskorski, 2011). HRV_C1d|The contributions of heart rate decelerations to short-term HRV, (Piskorski, 2011). HRV_SD2a|Long-term variance of contributions of accelerations (shortenings of RR \ intervals), (Piskorski, 2011). HRV_SD2d|Long-term variance of contributions of decelerations (prolongations of RR \ intervals), (Piskorski, 2011). HRV_C2a|The contributions of heart rate accelerations to long-term HRV, (Piskorski, 2011). HRV_C2d|The contributions of heart rate decelerations to long-term HRV, (Piskorski, 2011). HRV_SDNNa|Total variance of contributions of accelerations (shortenings of RR \ intervals), (Piskorski, 2011). HRV_SDNNd|Total variance of contributions of decelerations (prolongations of RR \ intervals), (Piskorski, 2011). HRV_Ca|The total contributions of heart rate accelerations to HRV. HRV_Cd|The total contributions of heart rate decelerations to HRV. HRV_PIP|Percentage of inflection points of the RR intervals series. HRV_IALS|Inverse of the average length of the acceleration/deceleration segments. HRV_PSS|Percentage of short segments. HRV_PAS|Percentage of NN intervals in alternation segments. See Also -------- ecg_peaks, ppg_peaks, hrv_frequency, hrv_time, hrv_summary Examples -------- .. ipython:: python import neurokit2 as nk # Download data data = nk.data("bio_resting_5min_100hz") # Find peaks peaks, info = nk.ecg_peaks(data["ECG"], sampling_rate=100) # Compute HRV indices @savefig p_hrv_nonlinear1.png scale=100% hrv = nk.hrv_nonlinear(peaks, sampling_rate=100, show=True) @suppress plt.close() .. ipython:: python hrv References ---------- * Pham, T., Lau, Z. J., Chen, S. H., & Makowski, D. (2021). Heart Rate Variability in Psychology: A Review of HRV Indices and an Analysis Tutorial. Sensors, 21(12), 3998. https://doi.org/10.3390/s21123998 * Yan, C., Li, P., Ji, L., Yao, L., Karmakar, C., & Liu, C. (2017). Area asymmetry of heart rate variability signal. Biomedical engineering online, 16(1), 112. * Ciccone, A. B., Siedlik, J. A., Wecht, J. M., Deckert, J. A., Nguyen, N. D., & Weir, J. P.\ (2017). Reminder: RMSSD and SD1 are identical heart rate variability metrics. Muscle & nerve, 56 (4), 674-678. * Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in public health, 5, 258. * Costa, M. D., Davis, R. B., & Goldberger, A. L. (2017). Heart rate fragmentation: a new approach to the analysis of cardiac interbeat interval dynamics. Front. Physiol. 8, 255. * Jeppesen, J., Beniczky, S., Johansen, P., Sidenius, P., & Fuglsang-Frederiksen, A. (2014). Using Lorenz plot and Cardiac Sympathetic Index of heart rate variability for detecting seizures for patients with epilepsy. In 2014 36th Annual International Conference of the IEE Engineering in Medicine and Biology Society (pp. 4563-4566). IEEE. * Piskorski, J., & Guzik, P. (2011). Asymmetric properties of long-term and total heart rate variability. Medical & biological engineering & computing, 49(11), 1289-1297. * Stein, P. K. (2002). Assessing heart rate variability from real-world Holter reports. Cardiac electrophysiology review, 6(3), 239-244. * Brennan, M. et al. (2001). Do Existing Measures of Poincaré Plot Geometry Reflect Nonlinear Features of Heart Rate Variability?. IEEE Transactions on Biomedical Engineering, 48(11), 1342-1347. * Toichi, M., Sugiura, T., Murai, T., & Sengoku, A. (1997). A new method of assessing cardiac autonomic function and its comparison with spectral analysis and coefficient of variation of R-R interval. Journal of the autonomic nervous system, 62(1-2), 79-84. * Acharya, R. U., Lim, C. M., & Joseph, P. (2002). Heart rate variability analysis using correlation dimension and detrended fluctuation analysis. Itbm-Rbm, 23(6), 333-339. """ # Sanitize input # If given peaks, compute R-R intervals (also referred to as NN) in milliseconds rri, rri_time, rri_missing = _hrv_format_input(peaks, sampling_rate=sampling_rate) if rri_missing: warn( "Missing interbeat intervals have been detected. " "Note that missing intervals can distort some HRV features, in particular " "nonlinear indices.", category=NeuroKitWarning, ) # Initialize empty container for results out = {} # Poincaré features (SD1, SD2, etc.) out = _hrv_nonlinear_poincare(rri, rri_time=rri_time, rri_missing=rri_missing, out=out) # Heart Rate Fragmentation out = _hrv_nonlinear_fragmentation(rri, rri_time=rri_time, rri_missing=rri_missing, out=out) # Heart Rate Asymmetry out = _hrv_nonlinear_poincare_hra(rri, rri_time=rri_time, rri_missing=rri_missing, out=out) # DFA out = _hrv_dfa(rri, out, **kwargs) # Complexity tolerance = 0.2 * np.std(rri, ddof=1) out["ApEn"], _ = entropy_approximate(rri, delay=1, dimension=2, tolerance=tolerance) out["SampEn"], _ = entropy_sample(rri, delay=1, dimension=2, tolerance=tolerance) out["ShanEn"], _ = entropy_shannon(rri) out["FuzzyEn"], _ = entropy_fuzzy(rri, delay=1, dimension=2, tolerance=tolerance) out["MSEn"], _ = entropy_multiscale(rri, dimension=2, tolerance=tolerance, method="MSEn") out["CMSEn"], _ = entropy_multiscale(rri, dimension=2, tolerance=tolerance, method="CMSEn") out["RCMSEn"], _ = entropy_multiscale(rri, dimension=2, tolerance=tolerance, method="RCMSEn") out["CD"], _ = fractal_correlation(rri, delay=1, dimension=2, **kwargs) out["HFD"], _ = fractal_higuchi(rri, k_max=10, **kwargs) out["KFD"], _ = fractal_katz(rri) out["LZC"], _ = complexity_lempelziv(rri, **kwargs) if show: _hrv_nonlinear_show(rri, rri_time=rri_time, rri_missing=rri_missing, out=out) out = pd.DataFrame.from_dict(out, orient="index").T.add_prefix("HRV_") return out
# ============================================================================= # Get SD1 and SD2 # ============================================================================= def _hrv_nonlinear_poincare(rri, rri_time=None, rri_missing=False, out={}): """Compute SD1 and SD2. - Brennan (2001). Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? """ # HRV and hrvanalysis rri_n = rri[:-1] rri_plus = rri[1:] if rri_missing: # Only include successive differences rri_plus = rri_plus[_intervals_successive(rri, intervals_time=rri_time)] rri_n = rri_n[_intervals_successive(rri, intervals_time=rri_time)] x1 = (rri_n - rri_plus) / np.sqrt(2) # Eq.7 x2 = (rri_n + rri_plus) / np.sqrt(2) sd1 = np.std(x1, ddof=1) sd2 = np.std(x2, ddof=1) out["SD1"] = sd1 out["SD2"] = sd2 # SD1 / SD2 out["SD1SD2"] = sd1 / sd2 # Area of ellipse described by SD1 and SD2 out["S"] = np.pi * out["SD1"] * out["SD2"] # CSI / CVI T = 4 * out["SD1"] L = 4 * out["SD2"] out["CSI"] = L / T out["CVI"] = np.log10(L * T) out["CSI_Modified"] = L**2 / T return out def _hrv_nonlinear_poincare_hra(rri, rri_time=None, rri_missing=False, out={}): """Heart Rate Asymmetry Indices. - Asymmetry of Poincaré plot (or termed as heart rate asymmetry, HRA) - Yan (2017) - Asymmetric properties of long-term and total heart rate variability - Piskorski (2011) """ N = len(rri) - 1 x = rri[:-1] # rri_n, x-axis y = rri[1:] # rri_plus, y-axis if rri_missing: # Only include successive differences x = x[_intervals_successive(rri, intervals_time=rri_time)] y = y[_intervals_successive(rri, intervals_time=rri_time)] N = len(x) diff = y - x decelerate_indices = np.where(diff > 0)[0] # set of points above IL where y > x accelerate_indices = np.where(diff < 0)[0] # set of points below IL where y < x nochange_indices = np.where(diff == 0)[0] # Distances to centroid line l2 centroid_x = np.mean(x) centroid_y = np.mean(y) dist_l2_all = abs((x - centroid_x) + (y - centroid_y)) / np.sqrt(2) # Distances to LI dist_all = abs(y - x) / np.sqrt(2) # Calculate the angles theta_all = abs(np.arctan(1) - np.arctan(y / x)) # phase angle LI - phase angle of i-th point # Calculate the radius r = np.sqrt(x**2 + y**2) # Sector areas S_all = 1 / 2 * theta_all * r**2 # Guzik's Index (GI) den_GI = np.sum(dist_all) num_GI = np.sum(dist_all[decelerate_indices]) out["GI"] = (num_GI / den_GI) * 100 # Slope Index (SI) den_SI = np.sum(theta_all) num_SI = np.sum(theta_all[decelerate_indices]) out["SI"] = (num_SI / den_SI) * 100 # Area Index (AI) den_AI = np.sum(S_all) num_AI = np.sum(S_all[decelerate_indices]) out["AI"] = (num_AI / den_AI) * 100 # Porta's Index (PI) m = N - len(nochange_indices) # all points except those on LI b = len(accelerate_indices) # number of points below LI out["PI"] = (b / m) * 100 # Short-term asymmetry (SD1) sd1d = np.sqrt(np.sum(dist_all[decelerate_indices] ** 2) / (N - 1)) sd1a = np.sqrt(np.sum(dist_all[accelerate_indices] ** 2) / (N - 1)) sd1I = np.sqrt(sd1d**2 + sd1a**2) out["C1d"] = (sd1d / sd1I) ** 2 out["C1a"] = (sd1a / sd1I) ** 2 out["SD1d"] = sd1d # SD1 deceleration out["SD1a"] = sd1a # SD1 acceleration # out["SD1I"] = sd1I # SD1 based on LI, whereas SD1 is based on centroid line l1 # Long-term asymmetry (SD2) longterm_dec = np.sum(dist_l2_all[decelerate_indices] ** 2) / (N - 1) longterm_acc = np.sum(dist_l2_all[accelerate_indices] ** 2) / (N - 1) longterm_nodiff = np.sum(dist_l2_all[nochange_indices] ** 2) / (N - 1) sd2d = np.sqrt(longterm_dec + 0.5 * longterm_nodiff) sd2a = np.sqrt(longterm_acc + 0.5 * longterm_nodiff) sd2I = np.sqrt(sd2d**2 + sd2a**2) out["C2d"] = (sd2d / sd2I) ** 2 out["C2a"] = (sd2a / sd2I) ** 2 out["SD2d"] = sd2d # SD2 deceleration out["SD2a"] = sd2a # SD2 acceleration # out["SD2I"] = sd2I # identical with SD2 # Total asymmerty (SDNN) sdnnd = np.sqrt(0.5 * (sd1d**2 + sd2d**2)) # SDNN deceleration sdnna = np.sqrt(0.5 * (sd1a**2 + sd2a**2)) # SDNN acceleration sdnn = np.sqrt(sdnnd**2 + sdnna**2) # should be similar to sdnn in hrv_time out["Cd"] = (sdnnd / sdnn) ** 2 out["Ca"] = (sdnna / sdnn) ** 2 out["SDNNd"] = sdnnd out["SDNNa"] = sdnna return out def _hrv_nonlinear_fragmentation(rri, rri_time=None, rri_missing=False, out={}): """Heart Rate Fragmentation Indices - Costa (2017) The more fragmented a time series is, the higher the PIP, IALS, PSS, and PAS indices will be. """ diff_rri = np.diff(rri) if rri_missing: # Only include successive differences diff_rri = diff_rri[_intervals_successive(rri, intervals_time=rri_time)] zerocrossings = signal_zerocrossings(diff_rri) # Percentage of inflection points (PIP) N = len(diff_rri) + 1 out["PIP"] = len(zerocrossings) / N # Inverse of the average length of the acceleration/deceleration segments (IALS) accelerations = np.where(diff_rri > 0)[0] decelerations = np.where(diff_rri < 0)[0] consecutive = find_consecutive(accelerations) + find_consecutive(decelerations) lengths = [len(i) for i in consecutive] out["IALS"] = 1 / np.average(lengths) # Percentage of short segments (PSS) - The complement of the percentage of NN intervals in # acceleration and deceleration segments with three or more NN intervals out["PSS"] = np.sum(np.asarray(lengths) < 3) / len(lengths) # Percentage of NN intervals in alternation segments (PAS). An alternation segment is a sequence # of at least four NN intervals, for which heart rate acceleration changes sign every beat. We note # that PAS quantifies the amount of a particular sub-type of fragmentation (alternation). A time # series may be highly fragmented and have a small amount of alternation. However, all time series # with large amount of alternation are highly fragmented. alternations = find_consecutive(zerocrossings) lengths = [len(i) for i in alternations] out["PAS"] = np.sum(np.asarray(lengths) >= 4) / len(lengths) return out # ============================================================================= # DFA # ============================================================================= def _hrv_dfa(rri, out, n_windows="default", **kwargs): # if "dfa_windows" in kwargs: # dfa_windows = kwargs["dfa_windows"] # else: # dfa_windows = [(4, 11), (12, None)] # consider using dict.get() mthd directly dfa_windows = kwargs.get("dfa_windows", [(4, 11), (12, None)]) # Determine max beats if dfa_windows[1][1] is None: max_beats = (len(rri) + 1) / 10 # Number of peaks divided by 10 else: max_beats = dfa_windows[1][1] # No. of windows to compute for short and long term if n_windows == "default": n_windows_short = int(dfa_windows[0][1] - dfa_windows[0][0] + 1) n_windows_long = int(max_beats - dfa_windows[1][0] + 1) elif isinstance(n_windows, list): n_windows_short = n_windows[0] n_windows_long = n_windows[1] # Compute DFA alpha1 short_window = np.linspace(dfa_windows[0][0], dfa_windows[0][1], n_windows_short).astype(int) # For monofractal out["DFA_alpha1"], _ = fractal_dfa(rri, multifractal=False, scale=short_window, **kwargs) # For multifractal mdfa_alpha1, _ = fractal_dfa(rri, multifractal=True, q=np.arange(-5, 6), scale=short_window, **kwargs) for k in mdfa_alpha1.columns: out["MFDFA_alpha1_" + k] = mdfa_alpha1[k].values[0] # Compute DFA alpha2 # sanatize max_beats if max_beats < dfa_windows[1][0] + 1: warn( "DFA_alpha2 related indices will not be calculated. " "The maximum duration of the windows provided for the long-term correlation is smaller " "than the minimum duration of windows. Refer to the `scale` argument in `nk.fractal_dfa()` " "for more information.", category=NeuroKitWarning, ) return out else: long_window = np.linspace(dfa_windows[1][0], int(max_beats), n_windows_long).astype(int) # For monofractal out["DFA_alpha2"], _ = fractal_dfa(rri, multifractal=False, scale=long_window, **kwargs) # For multifractal mdfa_alpha2, _ = fractal_dfa(rri, multifractal=True, q=np.arange(-5, 6), scale=long_window, **kwargs) for k in mdfa_alpha2.columns: out["MFDFA_alpha2_" + k] = mdfa_alpha2[k].values[0] return out # ============================================================================= # Plot # ============================================================================= def _hrv_nonlinear_show(rri, rri_time=None, rri_missing=False, out={}, ax=None, ax_marg_x=None, ax_marg_y=None): mean_heart_period = np.nanmean(rri) sd1 = out["SD1"] sd2 = out["SD2"] if isinstance(sd1, pd.Series): sd1 = float(sd1.iloc[0]) if isinstance(sd2, pd.Series): sd2 = float(sd2.iloc[0]) # Poincare values ax1 = rri[:-1] ax2 = rri[1:] if rri_missing: # Only include successive differences ax1 = ax1[_intervals_successive(rri, intervals_time=rri_time)] ax2 = ax2[_intervals_successive(rri, intervals_time=rri_time)] # Set grid boundaries ax1_lim = (max(ax1) - min(ax1)) / 10 ax2_lim = (max(ax2) - min(ax2)) / 10 ax1_min = min(ax1) - ax1_lim ax1_max = max(ax1) + ax1_lim ax2_min = min(ax2) - ax2_lim ax2_max = max(ax2) + ax2_lim # Prepare figure if ax is None and ax_marg_x is None and ax_marg_y is None: gs = matplotlib.gridspec.GridSpec(4, 4) fig = plt.figure(figsize=(8, 8)) ax_marg_x = plt.subplot(gs[0, 0:3]) ax_marg_y = plt.subplot(gs[1:4, 3]) ax = plt.subplot(gs[1:4, 0:3]) gs.update(wspace=0.025, hspace=0.05) # Reduce spaces plt.suptitle("Poincaré Plot") else: fig = None # Create meshgrid xx, yy = np.mgrid[ax1_min:ax1_max:100j, ax2_min:ax2_max:100j] # Fit Gaussian Kernel positions = np.vstack([xx.ravel(), yy.ravel()]) values = np.vstack([ax1, ax2]) kernel = scipy.stats.gaussian_kde(values) f = np.reshape(kernel(positions).T, xx.shape) cmap = plt.get_cmap("Blues").resampled(10) ax.contourf(xx, yy, f, cmap=cmap) ax.imshow(np.rot90(f), extent=[ax1_min, ax1_max, ax2_min, ax2_max], aspect="auto") # Marginal densities ax_marg_x.hist(ax1, bins=int(len(ax1) / 10), density=True, alpha=1, color="#ccdff0", edgecolor="none") ax_marg_y.hist( ax2, bins=int(len(ax2) / 10), density=True, alpha=1, color="#ccdff0", edgecolor="none", orientation="horizontal", zorder=1, ) kde1 = scipy.stats.gaussian_kde(ax1) x1_plot = np.linspace(ax1_min, ax1_max, len(ax1)) x1_dens = kde1.evaluate(x1_plot) ax_marg_x.fill(x1_plot, x1_dens, facecolor="none", edgecolor="#1b6aaf", alpha=0.8, linewidth=2) kde2 = scipy.stats.gaussian_kde(ax2) x2_plot = np.linspace(ax2_min, ax2_max, len(ax2)) x2_dens = kde2.evaluate(x2_plot) ax_marg_y.fill_betweenx(x2_plot, x2_dens, facecolor="none", edgecolor="#1b6aaf", linewidth=2, alpha=0.8, zorder=2) # Turn off marginal axes labels ax_marg_x.axis("off") ax_marg_y.axis("off") # Plot ellipse angle = 45 width = 2 * sd2 + 1 height = 2 * sd1 + 1 xy = (mean_heart_period, mean_heart_period) ellipse = matplotlib.patches.Ellipse(xy=xy, width=width, height=height, angle=angle, linewidth=2, fill=False) ellipse.set_alpha(0.5) ellipse.set_facecolor("#2196F3") ax.add_patch(ellipse) # Plot points only outside ellipse cos_angle = np.cos(np.radians(180.0 - angle)) sin_angle = np.sin(np.radians(180.0 - angle)) xc = ax1 - xy[0] yc = ax2 - xy[1] xct = xc * cos_angle - yc * sin_angle yct = xc * sin_angle + yc * cos_angle rad_cc = (xct**2 / (width / 2.0) ** 2) + (yct**2 / (height / 2.0) ** 2) points = np.where(rad_cc > 1)[0] ax.plot(ax1[points], ax2[points], "o", color="k", alpha=0.5, markersize=4) # SD1 and SD2 arrow sd1_arrow = ax.arrow( mean_heart_period, mean_heart_period, float(-sd1 * np.sqrt(2) / 2), float(sd1 * np.sqrt(2) / 2), linewidth=3, ec="#E91E63", fc="#E91E63", label="SD1", ) sd2_arrow = ax.arrow( mean_heart_period, mean_heart_period, float(sd2 * np.sqrt(2) / 2), float(sd2 * np.sqrt(2) / 2), linewidth=3, ec="#FF9800", fc="#FF9800", label="SD2", ) ax.set_xlabel(r"$RR_{n} (ms)$") ax.set_ylabel(r"$RR_{n+1} (ms)$") ax.legend(handles=[sd1_arrow, sd2_arrow], fontsize=12, loc="best") return fig