Source code for neurokit2.microstates.microstates_peaks

# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
import scipy.signal

from ..eeg import eeg_gfp


[docs] def microstates_peaks(eeg, gfp=None, sampling_rate=None, distance_between=0.01, **kwargs): """**Find peaks of stability using the GFP** Peaks in the global field power (GFP) are often used to find microstates. Parameters ---------- eeg : np.ndarray An array (channels, times) of M/EEG data or a Raw or Epochs object from MNE. gfp : list The Global Field Power (GFP). If ``None``, will be obtained via :func:`.eeg_gfp`. sampling_rate : int The sampling frequency of the signal (in Hz, i.e., samples/second). distance_between : float The minimum distance (this value is to be multiplied by the sampling rate) between peaks. The default is 0.01, which corresponds to 10 ms (as suggested in the Microstate EEGlab toolbox). **kwargs Additional arguments to be passed to :func:`.eeg_gfp`. Returns ------- peaks : array The index of the sample where GFP peaks occur. Examples --------- .. ipython:: python import neurokit2 as nk eeg = nk.mne_data("filt-0-40_raw") gfp = nk.eeg_gfp(eeg) peaks1 = nk.microstates_peaks(eeg, distance_between=0.01) peaks2 = nk.microstates_peaks(eeg, distance_between=0.05) peaks3 = nk.microstates_peaks(eeg, distance_between=0.10) @savefig p_microstates_peaks1.png scale=100% nk.events_plot([peaks1[peaks1 < 500], peaks2[peaks2 < 500], peaks3[peaks3 < 500]], gfp[0:500]) @suppress plt.close() See Also -------- .eeg_gfp """ if isinstance(eeg, (pd.DataFrame, np.ndarray)) is False: sampling_rate = eeg.info["sfreq"] eeg = eeg.get_data() if sampling_rate is None: raise ValueError( "NeuroKit error: microstates_peaks(): The sampling_rate is requested ", "for this function to run. Please provide it as an argument.", ) # If we don't want to rely on peaks but take uniformly spaced samples # (used in microstates_clustering) if isinstance(gfp, (int, float)): if gfp <= 1: # If fraction gfp = int(gfp * len(eeg[0, :])) return np.linspace(0, len(eeg[0, :]), gfp, endpoint=False, dtype=int) # Deal with string inputs if isinstance(gfp, str): if gfp == "all": gfp = False elif gfp == "gfp": gfp = True else: raise ValueError( "The `gfp` argument was not understood.", ) # If we want ALL the indices if gfp is False: return np.arange(len(eeg)) # if gfp is True or gfp is None: gfp = eeg_gfp(eeg, **kwargs) peaks = _microstates_peaks_gfp( gfp=gfp, sampling_rate=sampling_rate, distance_between=distance_between ) return peaks
# ============================================================================= # Methods # ============================================================================= def _microstates_peaks_gfp(gfp=None, sampling_rate=None, distance_between=0.01): minimum_separation = int(distance_between * sampling_rate) # 10 ms (Microstate EEGlab toolbox) if minimum_separation == 0: minimum_separation = 1 peaks_gfp, _ = scipy.signal.find_peaks(gfp, distance=minimum_separation) # Alternative methods: (doesn't work best IMO) # peaks_gfp = scipy.signal.find_peaks_cwt(gfp, np.arange(minimum_separation, int(0.2 * sampling_rate))) # peaks_gfp = scipy.signal.argrelmax(gfp)[0] # Use DISS # diss = nk.eeg_diss(eeg, gfp) # peaks_diss, _ = scipy.signal.find_peaks(diss, distance=minimum_separation) return peaks_gfp