Source code for neurokit2.microstates.microstates_peaks
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
import scipy.signal
from ..eeg import eeg_gfp
[docs]
def microstates_peaks(eeg, gfp=None, sampling_rate=None, distance_between=0.01, **kwargs):
"""**Find peaks of stability using the GFP**
Peaks in the global field power (GFP) are often used to find microstates.
Parameters
----------
eeg : np.ndarray
An array (channels, times) of M/EEG data or a Raw or Epochs object from MNE.
gfp : list
The Global Field Power (GFP). If ``None``, will be obtained via :func:`.eeg_gfp`.
sampling_rate : int
The sampling frequency of the signal (in Hz, i.e., samples/second).
distance_between : float
The minimum distance (this value is to be multiplied by the sampling rate) between peaks.
The default is 0.01, which corresponds to 10 ms (as suggested in the Microstate EEGlab
toolbox).
**kwargs
Additional arguments to be passed to :func:`.eeg_gfp`.
Returns
-------
peaks : array
The index of the sample where GFP peaks occur.
Examples
---------
.. ipython:: python
import neurokit2 as nk
eeg = nk.mne_data("filt-0-40_raw")
gfp = nk.eeg_gfp(eeg)
peaks1 = nk.microstates_peaks(eeg, distance_between=0.01)
peaks2 = nk.microstates_peaks(eeg, distance_between=0.05)
peaks3 = nk.microstates_peaks(eeg, distance_between=0.10)
@savefig p_microstates_peaks1.png scale=100%
nk.events_plot([peaks1[peaks1 < 500], peaks2[peaks2 < 500], peaks3[peaks3 < 500]], gfp[0:500])
@suppress
plt.close()
See Also
--------
.eeg_gfp
"""
if isinstance(eeg, (pd.DataFrame, np.ndarray)) is False:
sampling_rate = eeg.info["sfreq"]
eeg = eeg.get_data()
if sampling_rate is None:
raise ValueError(
"NeuroKit error: microstates_peaks(): The sampling_rate is requested ",
"for this function to run. Please provide it as an argument.",
)
# If we don't want to rely on peaks but take uniformly spaced samples
# (used in microstates_clustering)
if isinstance(gfp, (int, float)):
if gfp <= 1: # If fraction
gfp = int(gfp * len(eeg[0, :]))
return np.linspace(0, len(eeg[0, :]), gfp, endpoint=False, dtype=int)
# Deal with string inputs
if isinstance(gfp, str):
if gfp == "all":
gfp = False
elif gfp == "gfp":
gfp = True
else:
raise ValueError(
"The `gfp` argument was not understood.",
)
# If we want ALL the indices
if gfp is False:
return np.arange(len(eeg))
# if gfp is True or gfp is None:
gfp = eeg_gfp(eeg, **kwargs)
peaks = _microstates_peaks_gfp(
gfp=gfp, sampling_rate=sampling_rate, distance_between=distance_between
)
return peaks
# =============================================================================
# Methods
# =============================================================================
def _microstates_peaks_gfp(gfp=None, sampling_rate=None, distance_between=0.01):
minimum_separation = int(distance_between * sampling_rate) # 10 ms (Microstate EEGlab toolbox)
if minimum_separation == 0:
minimum_separation = 1
peaks_gfp, _ = scipy.signal.find_peaks(gfp, distance=minimum_separation)
# Alternative methods: (doesn't work best IMO)
# peaks_gfp = scipy.signal.find_peaks_cwt(gfp, np.arange(minimum_separation, int(0.2 * sampling_rate)))
# peaks_gfp = scipy.signal.argrelmax(gfp)[0]
# Use DISS
# diss = nk.eeg_diss(eeg, gfp)
# peaks_diss, _ = scipy.signal.find_peaks(diss, distance=minimum_separation)
return peaks_gfp