Source code for neurokit2.ppg.ppg_analyze

# -*- coding: utf-8 -*-
import pandas as pd

from .ppg_eventrelated import ppg_eventrelated
from .ppg_intervalrelated import ppg_intervalrelated


[docs] def ppg_analyze(data, sampling_rate=1000, method="auto"): """**Photoplethysmography (PPG) Analysis**. Performs PPG analysis on either epochs (event-related analysis) or on longer periods of data such as resting-state data. Parameters ---------- data : Union[dict, pd.DataFrame] A dictionary of epochs, containing one DataFrame per epoch, usually obtained via :func:`.epochs_create`, or a DataFrame containing all epochs, usually obtained via :func:`.epochs_to_df`. Can also take a DataFrame of processed signals from a longer period of data, typically generated by :func:`.ppg_process` or :func:`.bio_process`. Can also take a dict containing sets of separate periods of data. sampling_rate : int The sampling frequency of the signal (in Hz, i.e., samples/second). Defaults to 1000Hz. method : str Can be one of ``"event-related"`` for event-related analysis on epochs, or ``"interval-related"`` for analysis on longer periods of data. Defaults to ``"auto"`` where the right method will be chosen based on the mean duration of the data (``"event-related"`` for duration under 10s). Returns ------- DataFrame A dataframe containing the analyzed PPG features. If event-related analysis is conducted, each epoch is indicated by the ``Label`` column. See :func:`.ppg_eventrelated` and :func:`.ppg_intervalrelated` docstrings for details. See Also -------- bio_process, ppg_process, epochs_create, ppg_eventrelated, ppg_intervalrelated Examples ---------- .. ipython:: python import neurokit2 as nk # Example 1: Simulate data for event-related analysis ppg = nk.ppg_simulate(duration=20, sampling_rate=1000) # Process data ppg_signals, info = nk.ppg_process(ppg, sampling_rate=1000) epochs = nk.epochs_create(ppg_signals, events=[5000, 10000, 15000], epochs_start=-0.1, epochs_end=1.9) # Analyze analyze_epochs = nk.ppg_analyze(epochs, sampling_rate=1000) analyze_epochs # Example 2: Download the resting-state data data = nk.data("bio_resting_5min_100hz") # Process the data df, info = nk.ppg_process(data["PPG"], sampling_rate=100) # Analyze analyze_df = nk.ppg_analyze(df, sampling_rate=100) analyze_df """ method = method.lower() # Event-related analysis if method in ["event-related", "event", "epoch"]: # Sanity checks if isinstance(data, dict): for i in data: colnames = data[i].columns.values elif isinstance(data, pd.DataFrame): colnames = data.columns.values if len([i for i in colnames if "Label" in i]) == 0: raise ValueError( "NeuroKit error: ppg_analyze(): Wrong input or method," "we couldn't extract epochs features." ) else: features = ppg_eventrelated(data) # Interval-related analysis elif method in ["interval-related", "interval", "resting-state"]: features = ppg_intervalrelated(data, sampling_rate=sampling_rate) # Auto elif method in ["auto"]: if isinstance(data, dict): for i in data: duration = len(data[i]) / sampling_rate if duration >= 10: features = ppg_intervalrelated(data, sampling_rate=sampling_rate) else: features = ppg_eventrelated(data) if isinstance(data, pd.DataFrame): if "Label" in data.columns: epoch_len = data["Label"].value_counts()[0] duration = epoch_len / sampling_rate else: duration = len(data) / sampling_rate if duration >= 10: features = ppg_intervalrelated(data, sampling_rate=sampling_rate) else: features = ppg_eventrelated(data) return features