Source code for neurokit2.ppg.ppg_eventrelated

# -*- coding: utf-8 -*-
from ..epochs.eventrelated_utils import (
    _eventrelated_addinfo,
    _eventrelated_rate,
    _eventrelated_sanitizeinput,
    _eventrelated_sanitizeoutput,
)


[docs] def ppg_eventrelated(epochs, silent=False): """**Performs event-related PPG analysis on epochs** Parameters ---------- epochs : Union[dict, pd.DataFrame] A dict containing one DataFrame per event/trial, usually obtained via :func:`.epochs_create`, or a DataFrame containing all epochs, usually obtained via :func:`.epochs_to_df`. silent : bool If ``True``, silence possible warnings. Returns ------- DataFrame A dataframe containing the analyzed PPG features for each epoch, with each epoch indicated by the `Label` column (if not present, by the `Index` column). The analyzed features consist of the following: .. codebookadd:: PPG_Rate_Baseline|The baseline heart rate (at stimulus onset). PPG_Rate_Max|The maximum heart rate after stimulus onset. PPG_Rate_Min|The minimum heart rate after stimulus onset. PPG_Rate_Mean|The mean heart rate after stimulus onset. PPG_Rate_SD|The standard deviation of the heart rate after stimulus onset. PPG_Rate_Max_Time|The time at which maximum heart rate occurs. PPG_Rate_Min_Time|The time at which minimum heart rate occurs. We also include the following *experimental* features related to the parameters of a quadratic model: .. codebookadd:: PPG_Rate_Trend_Linear|The parameter corresponding to the linear trend. PPG_Rate_Trend_Quadratic|The parameter corresponding to the curvature. PPG_Rate_Trend_R2|The quality of the quadratic model. If too low, the parameters \ might not be reliable or meaningful. See Also -------- events_find, epochs_create, ppg_process Examples ---------- .. ipython:: python import neurokit2 as nk # Example with simulated data ppg, info = nk.ppg_process(nk.ppg_simulate(duration=20)) # Process the data epochs = nk.epochs_create(ppg, events=[5000, 10000, 15000], epochs_start=-0.1, epochs_end=1.9) nk.ppg_eventrelated(epochs) """ # Sanity checks epochs = _eventrelated_sanitizeinput(epochs, what="ppg", silent=silent) # Extract features and build dataframe data = {} # Initialize an empty dict for i in epochs.keys(): data[i] = {} # Initialize empty container # Rate data[i] = _eventrelated_rate(epochs[i], data[i], var="PPG_Rate") # Fill with more info data[i] = _eventrelated_addinfo(epochs[i], data[i]) # Return dataframe return _eventrelated_sanitizeoutput(data)