Source code for neurokit2.rsp.rsp_analyze

# -*- coding: utf-8 -*-
import pandas as pd

from .rsp_eventrelated import rsp_eventrelated
from .rsp_intervalrelated import rsp_intervalrelated


[docs] def rsp_analyze(data, sampling_rate=1000, method="auto"): """**RSP Analysis** Performs RSP analysis on either epochs (event-related analysis) or on longer periods of data such as resting-state data. Parameters ---------- data : dict or DataFrame A dictionary of epochs, containing one DataFrame per epoch, usually obtained via :func:`.epochs_create`, or a DataFrame containing all epochs, usually obtained via :func:`.epochs_to_df`. Can also take a DataFrame of processed signals from a longer period of data, typically generated by :func:`.rsp_process` or :func:`.bio_process`. Can also take a dict containing sets of separate periods of data. sampling_rate : int The sampling frequency of the signal (in Hz, i.e., samples/second). Defaults to 1000Hz. method : str Can be one of ``"event-related"`` for event-related analysis on epochs, or ``"interval-related"`` for analysis on longer periods of data. Defaults to ``"auto"`` where the right method will be chosen based on the mean duration of the data (``"event-related"`` for duration under 10s). Returns ------- DataFrame A dataframe containing the analyzed RSP features. If event-related analysis is conducted, each epoch is indicated by the `Label` column. See :func:`.rsp_eventrelated` and :func:`.rsp_intervalrelated` docstrings for details. See Also -------- bio_process, rsp_process, epochs_create, rsp_eventrelated, rsp_intervalrelated Examples ---------- .. ipython:: python import neurokit2 as nk # Example 1: Download the data for event-related analysis data = nk.data("bio_eventrelated_100hz") # Process the data for event-related analysis df, info = nk.bio_process(rsp=data["RSP"], sampling_rate=100) events = nk.events_find(data["Photosensor"], threshold_keep='below', event_conditions=["Negative", "Neutral", "Neutral", "Negative"]) epochs = nk.epochs_create(df, events, sampling_rate=100, epochs_start=-0.1, epochs_end=1.9) # Analyze nk.rsp_analyze(epochs, sampling_rate=100) # Example 2: Download the resting-state data data = nk.data("bio_resting_5min_100hz") # Process the data df, info = nk.rsp_process(data["RSP"], sampling_rate=100) # Analyze nk.rsp_analyze(df, sampling_rate=100) """ method = method.lower() # Event-related analysis if method in ["event-related", "event", "epoch"]: # Sanity checks if isinstance(data, dict): for i in data: colnames = data[i].columns.values elif isinstance(data, pd.DataFrame): colnames = data.columns.values if len([i for i in colnames if "Label" in i]) == 0: raise ValueError( "NeuroKit error: rsp_analyze(): Wrong input or method, we couldn't extract extract epochs features." ) else: features = rsp_eventrelated(data) # Interval-related analysis elif method in ["interval-related", "interval", "resting-state"]: features = rsp_intervalrelated(data, sampling_rate) # Auto elif method in ["auto"]: if isinstance(data, dict): for i in data: duration = len(data[i]) / sampling_rate if duration >= 10: features = rsp_intervalrelated(data, sampling_rate) else: features = rsp_eventrelated(data) if isinstance(data, pd.DataFrame): if "Label" in data.columns: epoch_len = data["Label"].value_counts()[0] duration = epoch_len / sampling_rate else: duration = len(data) / sampling_rate if duration >= 10: features = rsp_intervalrelated(data, sampling_rate) else: features = rsp_eventrelated(data) return features