Source code for neurokit2.rsp.rsp_eventrelated

# -*- coding: utf-8 -*-
from warnings import warn

import numpy as np

from ..epochs.eventrelated_utils import (
    _eventrelated_addinfo,
    _eventrelated_rate,
    _eventrelated_sanitizeinput,
    _eventrelated_sanitizeoutput,
)
from ..misc import NeuroKitWarning, find_closest


[docs] def rsp_eventrelated(epochs, silent=False): """**Performs event-related RSP analysis on epochs** Parameters ---------- epochs : Union[dict, pd.DataFrame] A dict containing one DataFrame per event/trial, usually obtained via :func:`.epochs_create`, or a DataFrame containing all epochs, usually obtained via :func:`.epochs_to_df`. silent : bool If ``True``, silence possible warnings. Returns ------- DataFrame A dataframe containing the analyzed RSP features for each epoch, with each epoch indicated by the `Label` column (if not present, by the `Index` column). The analyzed features consist of the following: .. codebookadd:: RSP_Rate_Max|The maximum respiratory rate after stimulus onset. RSP_Rate_Min|The minimum respiratory rate after stimulus onset. RSP_Rate_Mean|The mean respiratory rate after stimulus onset. RSP_Rate_SD|The standard deviation of the respiratory rate after stimulus onset. RSP_Rate_Max_Time|The time at which maximum respiratory rate occurs. RSP_Rate_Min_Time|The time at which minimum respiratory rate occurs. RSP_Amplitude_Baseline|The respiratory amplitude at stimulus onset. RSP_Amplitude_Max|The change in maximum respiratory amplitude from before stimulus onset. RSP_Amplitude_Min|The change in minimum respiratory amplitude from before stimulus onset. RSP_Amplitude_Mean|The change in mean respiratory amplitude from before stimulus onset. RSP_Amplitude_SD|The standard deviation of the respiratory amplitude after stimulus onset. RSP_Phase|Indication of whether the onset of the event concurs with respiratory inspiration (1) or expiration (0). RSP_PhaseCompletion|Indication of the stage of the current respiration phase (0 to 1) at the onset of the event. See Also -------- events_find, epochs_create, bio_process Examples ---------- .. ipython:: python import neurokit2 as nk # Example with simulated data rsp, info = nk.rsp_process(nk.rsp_simulate(duration=120)) epochs = nk.epochs_create(rsp, events=[5000, 10000, 15000], epochs_start=-0.1, epochs_end=1.9) # Analyze nk.rsp_eventrelated(epochs) .. ipython:: python # Example with real data data = nk.data("bio_eventrelated_100hz") # Process the data df, info = nk.bio_process(rsp=data["RSP"], sampling_rate=100) events = nk.events_find(data["Photosensor"], threshold_keep='below', event_conditions=["Negative", "Neutral", "Neutral", "Negative"]) epochs = nk.epochs_create(df, events, sampling_rate=100, epochs_start=-0.1, epochs_end=2.9) # Analyze nk.rsp_eventrelated(epochs) """ # Sanity checks epochs = _eventrelated_sanitizeinput(epochs, what="rsp", silent=silent) # Extract features and build dataframe data = {} # Initialize an empty dict for i in epochs.keys(): data[i] = {} # Initialize empty container # Rate data[i] = _eventrelated_rate(epochs[i], data[i], var="RSP_Rate") # Amplitude data[i] = _rsp_eventrelated_amplitude(epochs[i], data[i]) # Inspiration data[i] = _rsp_eventrelated_inspiration(epochs[i], data[i]) # RVT data[i] = _rsp_eventrelated_rvt(epochs[i], data[i]) # Fill with more info data[i] = _eventrelated_addinfo(epochs[i], data[i]) df = _eventrelated_sanitizeoutput(data) return df
# ============================================================================= # Internals # ============================================================================= def _rsp_eventrelated_amplitude(epoch, output={}): # Sanitize input if "RSP_Amplitude" not in epoch: warn( "Input does not have an `RSP_Amplitude` column." " Will skip all amplitude-related features.", category=NeuroKitWarning, ) return output # Get baseline zero = find_closest(0, epoch.index.values, return_index=True) # Find index closest to 0 baseline = epoch["RSP_Amplitude"].iloc[zero] signal = epoch["RSP_Amplitude"].values[zero + 1 : :] # Max / Min / Mean output["RSP_Amplitude_Baseline"] = baseline output["RSP_Amplitude_Max"] = np.max(signal) - baseline output["RSP_Amplitude_Min"] = np.min(signal) - baseline output["RSP_Amplitude_MeanRaw"] = np.mean(signal) output["RSP_Amplitude_Mean"] = output["RSP_Amplitude_MeanRaw"] - baseline output["RSP_Amplitude_SD"] = np.std(signal) return output def _rsp_eventrelated_inspiration(epoch, output={}): # Sanitize input if "RSP_Phase" not in epoch: warn( "Input does not have an `RSP_Phase` column." " Will not indicate whether event onset concurs with inspiration.", category=NeuroKitWarning, ) return output # Indication of inspiration output["RSP_Phase"] = epoch["RSP_Phase"][epoch.index > 0].iloc[0] output["RSP_Phase_Completion"] = epoch["RSP_Phase_Completion"][epoch.index > 0].iloc[0] return output def _rsp_eventrelated_rvt(epoch, output={}): # Sanitize input if "RSP_RVT" not in epoch: warn( "Input does not have an `RSP_RVT` column. Will skip all RVT-related features.", category=NeuroKitWarning, ) return output # Get baseline zero = find_closest(0, epoch.index.values, return_index=True) # Find index closest to 0 baseline = epoch["RSP_RVT"].iloc[zero] signal = epoch["RSP_RVT"].values[zero + 1 : :] # Mean output["RSP_RVT_Baseline"] = baseline output["RSP_RVT_Mean"] = np.mean(signal) - baseline return output def _rsp_eventrelated_symmetry(epoch, output={}): # Sanitize input if "RSP_Symmetry_PeakTrough" not in epoch: warn( "Input does not have an `RSP_Symmetry_PeakTrough` column." + " Will skip all symmetry-related features.", category=NeuroKitWarning, ) return output # Get baseline zero = find_closest(0, epoch.index.values, return_index=True) # Find index closest to 0 baseline1 = epoch["RSP_Symmetry_PeakTrough"].iloc[zero] signal1 = epoch["RSP_Symmetry_PeakTrough"].values[zero + 1 : :] baseline2 = epoch["RSP_Symmetry_RiseDecay"].iloc[zero] signal2 = epoch["RSP_Symmetry_RiseDecay"].values[zero + 1 : :] # Mean output["RSP_Symmetry_PeakTrough_Baseline"] = baseline1 output["RSP_Symmetry_RiseDecay_Baseline"] = baseline2 output["RSP_Symmetry_PeakTrough_Mean"] = np.mean(signal1) - baseline1 output["RSP_Symmetry_RiseDecay_Mean"] = np.mean(signal2) - baseline2 return output