Source code for neurokit2.rsp.rsp_intervalrelated

# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd

from .rsp_rav import rsp_rav
from .rsp_rrv import rsp_rrv


[docs] def rsp_intervalrelated(data, sampling_rate=1000): """**State-related Respiration Indices** Performs RSP analysis on longer periods of data (typically > 10 seconds), such as resting-state data. It returns a dataframe containing features and characteristics of respiration in that interval. Parameters ---------- data : DataFrame or dict A DataFrame containing the different processed signal(s) as different columns, typically generated by :func:`.rsp_process` or :func:`.bio_process`. Can also take a dict containing sets of separately processed DataFrames. sampling_rate : int The sampling frequency of the signal (in Hz, i.e., samples/second). Returns ------- DataFrame A dataframe containing the analyzed RSP features. The analyzed features consist of the following: .. codebookadd:: RSP_Rate_Mean|The mean respiratory rate. RSP_Amplitude_Mean|The mean respiratory amplitude. RSP_Phase_Duration_Inspiration|The average inspiration duration. RSP_Phase_Duration_Expiration|The average expiration duration. RSP_Phase_Duration_Ratio|The inspiration-to-expiratory time ratio (I/E). * ``"RSP_RRV"``: the different respiratory rate variability metrices. See :func:`.rsp_rrv` docstrings for details. See Also -------- bio_process, rsp_eventrelated, rsp_rrv, rsp_rav Examples ---------- .. ipython:: python import neurokit2 as nk # Download data data = nk.data("bio_resting_5min_100hz") # Process the data df, info = nk.rsp_process(data["RSP"], sampling_rate=100) # Single dataframe is passed nk.rsp_intervalrelated(df, sampling_rate=100) epochs = nk.epochs_create(df, events=[0, 15000], sampling_rate=100, epochs_end=150) nk.rsp_intervalrelated(epochs, sampling_rate=100) """ # If one interval dataframe if isinstance(data, pd.DataFrame): intervals = _rsp_intervalrelated_features(data, sampling_rate) intervals = pd.DataFrame.from_dict(intervals, orient="index").T # If data is a dict (containing multiple intervals) elif isinstance(data, dict): intervals = {} for index in data: intervals[index] = {} # Initialize empty container # Add label info intervals[index]["Label"] = data[index]["Label"].iloc[0] # Features intervals[index] = _rsp_intervalrelated_features( data[index], sampling_rate, intervals[index] ) intervals = pd.DataFrame.from_dict(intervals, orient="index") return intervals
# ============================================================================= # Internals # ============================================================================= def _rsp_intervalrelated_features(data, sampling_rate, output={}): # Sanitize input colnames = data.columns.values if "RSP_Rate" in colnames: output["RSP_Rate_Mean"] = np.nanmean(data["RSP_Rate"].values) rrv = rsp_rrv(data, sampling_rate=sampling_rate) output.update(rrv.to_dict(orient="records")[0]) if "RSP_Amplitude" in colnames: rav = rsp_rav(data["RSP_Amplitude"].values, peaks=data) output.update(rav.to_dict(orient="records")[0]) if "RSP_RVT" in colnames: output["RSP_RVT"] = np.nanmean(data["RSP_RVT"].values) if "RSP_Symmetry_PeakTrough" in colnames: output["RSP_Symmetry_PeakTrough"] = np.nanmean( data["RSP_Symmetry_PeakTrough"].values ) output["RSP_Symmetry_RiseDecay"] = np.nanmean( data["RSP_Symmetry_RiseDecay"].values ) if "RSP_Phase" in colnames: # Extract inspiration durations insp_phases = data[data["RSP_Phase"] == 1] insp_start = insp_phases.index[insp_phases["RSP_Phase_Completion"] == 0] insp_end = insp_phases.index[insp_phases["RSP_Phase_Completion"] == 1] # Check that start of phase is before end of phase if insp_start[0] > insp_end[0]: insp_end = insp_end[1:] # Check for unequal lengths diff = abs(len(insp_start) - len(insp_end)) if len(insp_start) > len(insp_end): insp_start = insp_start[ : len(insp_start) - diff ] # remove extra start points elif len(insp_end) > len(insp_start): insp_end = insp_end[: len(insp_end) - diff] # remove extra end points insp_times = np.array(insp_end - insp_start) / sampling_rate # Extract expiration durations exp_phases = data[data["RSP_Phase"] == 0] exp_start = exp_phases.index[exp_phases["RSP_Phase_Completion"] == 0] exp_end = exp_phases.index[exp_phases["RSP_Phase_Completion"] == 1] # Check that start of phase is before end of phase if exp_start[0] > exp_end[0]: exp_end = exp_end[1:] # Check for unequal lengths diff = abs(len(exp_start) - len(exp_end)) if len(exp_start) > len(exp_end): exp_start = exp_start[: len(exp_start) - diff] # remove extra start points elif len(exp_end) > len(exp_start): exp_end = exp_end[: len(exp_end) - diff] # remove extra end points exp_times = np.array(exp_end - exp_start) / sampling_rate output["RSP_Phase_Duration_Inspiration"] = np.mean(insp_times) output["RSP_Phase_Duration_Expiration"] = np.mean(exp_times) output["RSP_Phase_Duration_Ratio"] = ( output["RSP_Phase_Duration_Inspiration"] / output["RSP_Phase_Duration_Expiration"] ) return output