Source code for neurokit2.rsp.rsp_process

# -*- coding: utf-8 -*-
import pandas as pd

from ..misc import as_vector
from ..misc.report import create_report
from ..signal import signal_rate
from .rsp_amplitude import rsp_amplitude
from .rsp_clean import rsp_clean
from .rsp_methods import rsp_methods
from .rsp_peaks import rsp_peaks
from .rsp_phase import rsp_phase
from .rsp_plot import rsp_plot
from .rsp_rvt import rsp_rvt
from .rsp_symmetry import rsp_symmetry


[docs] def rsp_process( rsp_signal, sampling_rate=1000, method="khodadad2018", method_rvt="harrison2021", report=None, **kwargs ): """**Process a respiration (RSP) signal** Convenience function that automatically processes a respiration signal with one of the following methods: * `Khodadad et al. (2018) <https://iopscience.iop.org/article/10.1088/1361-6579/aad7e6/meta>`_ * `BioSPPy <https://github.com/PIA-Group/BioSPPy/blob/master/biosppy/signals/resp.py>`_ Parameters ---------- rsp_signal : Union[list, np.array, pd.Series] The raw respiration channel (as measured, for instance, by a respiration belt). sampling_rate : int The sampling frequency of :func:`.rsp_signal` (in Hz, i.e., samples/second). method : str The processing pipeline to apply. Can be one of ``"khodadad2018"`` (default) or ``"biosppy"``. method_rvt : str The rvt method to apply. Can be one of ``"harrison2021"`` (default), ``"birn2006"`` or ``"power2020"``. report : str The filename of a report containing description and figures of processing (e.g. ``"myreport.html"``). Needs to be supplied if a report file should be generated. Defaults to ``None``. Can also be ``"text"`` to just print the text in the console without saving anything. **kwargs Other arguments to be passed to specific methods. For more information, see :func:`.rsp_methods`. Returns ------- signals : DataFrame A DataFrame of same length as :func:`.rsp_signal` containing the following columns: .. codebookadd:: RSP_Raw|The raw signal. RSP_Clean|The raw signal. RSP_Peaks|The respiratory peaks (exhalation onsets) marked as "1" in a list of zeros. RSP_Troughs|The respiratory troughs (inhalation onsets) marked as "1" in a list \ of zeros. RSP_Rate|The breathing rate interpolated between inhalation peaks. RSP_Amplitude|The breathing amplitude interpolated between inhalation peaks. RSP_Phase|The breathing phase, marked by "1" for inspiration and "0" for expiration. RSP_Phase_Completion|The breathing phase completion, expressed in percentage \ (from 0 to 1), representing the stage of the current respiratory phase. RSP_RVT|Respiratory volume per time (RVT). info : dict A dictionary containing the samples at which inhalation peaks and exhalation troughs occur, accessible with the keys ``"RSP_Peaks"``, and ``"RSP_Troughs"`` respectively, as well as the signals' sampling rate. See Also -------- rsp_clean, rsp_findpeaks, .signal_rate, rsp_amplitude, rsp_plot, rsp_phase, rsp_rvt, rsp_symmetry Examples -------- .. ipython:: python import neurokit2 as nk rsp = nk.rsp_simulate(duration=90, respiratory_rate=15) signals, info = nk.rsp_process(rsp, sampling_rate=1000, report="text") @savefig p_rsp_process_1.png scale=100% fig = nk.rsp_plot(signals, info) @suppress plt.close() """ # Sanitize input rsp_signal = as_vector(rsp_signal) methods = rsp_methods( sampling_rate=sampling_rate, method=method, method_rvt=method_rvt, **kwargs ) # Clean signal rsp_cleaned = rsp_clean( rsp_signal, sampling_rate=sampling_rate, method=methods["method_cleaning"], **methods["kwargs_cleaning"], ) # Extract, fix and format peaks peak_signal, info = rsp_peaks( rsp_cleaned, sampling_rate=sampling_rate, method=methods["method_peaks"], amplitude_min=0.3, **methods["kwargs_peaks"], ) info["sampling_rate"] = sampling_rate # Add sampling rate in dict info # Get additional parameters phase = rsp_phase(peak_signal, desired_length=len(rsp_signal)) amplitude = rsp_amplitude(rsp_cleaned, peak_signal) rate = signal_rate( info["RSP_Troughs"], sampling_rate=sampling_rate, desired_length=len(rsp_signal) ) symmetry = rsp_symmetry(rsp_cleaned, peak_signal) rvt = rsp_rvt( rsp_cleaned, method=methods["method_rvt"], sampling_rate=sampling_rate, silent=True, ) # Prepare output signals = pd.DataFrame( { "RSP_Raw": rsp_signal, "RSP_Clean": rsp_cleaned, "RSP_Amplitude": amplitude, "RSP_Rate": rate, "RSP_RVT": rvt, } ) signals = pd.concat([signals, phase, symmetry, peak_signal], axis=1) if report is not None: # Generate report containing description and figures of processing if ".html" in str(report): fig = rsp_plot(signals, info) else: fig = None create_report(file=report, signals=signals, info=methods, fig=fig) return signals, info