Source code for neurokit2.rsp.rsp_rrv

# -*- coding: utf-8 -*-
from warnings import warn

import matplotlib.patches
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

from ..complexity import entropy_approximate, entropy_sample, fractal_dfa
from ..misc import NeuroKitWarning
from ..signal import signal_power, signal_rate
from ..signal.signal_formatpeaks import _signal_formatpeaks_sanitize
from ..stats import mad


[docs] def rsp_rrv(rsp_rate, troughs=None, sampling_rate=1000, show=False, silent=True): """**Respiratory Rate Variability (RRV)** Computes time domain and frequency domain features for Respiratory Rate Variability (RRV) analysis. Parameters ---------- rsp_rate : array Array containing the respiratory rate, produced by :func:`.signal_rate`. troughs : dict The samples at which the inhalation onsets occur. Dict returned by :func:`rsp_peaks` (Accessible with the key, ``"RSP_Troughs"``). Defaults to ``None``. sampling_rate : int The sampling frequency of the signal (in Hz, i.e., samples/second). show : bool If ``True``, will return a Poincaré plot, a scattergram, which plots each breath-to-breath interval against the next successive one. The ellipse centers around the average breath-to-breath interval. Defaults to ``False``. silent : bool If ``False``, warnings will be printed. Default to ``True``. Returns ------- DataFrame DataFrame consisting of the computed RRV metrics, which includes: .. codebookadd:: RRV_SDBB|The standard deviation of the breath-to-breath intervals. RRV_RMSSD|The root mean square of successive differences of the breath-to-breath intervals. RRV_SDSD|The standard deviation of the successive differences between adjacent \ breath-to-breath intervals. RRV_BBx|The number of successive interval differences that are greater than x seconds. RRV_pBBx|the proportion of breath-to-breath intervals that are greater than x seconds, \ out of the total number of intervals. RRV_VLF|Spectral power density pertaining to very low frequency band (i.e., 0 to\ .04 Hz) by default. RRV_LF|Spectral power density pertaining to low frequency band (i.e., .04 to \ .15 Hz) by default. RRV_HF|Spectral power density pertaining to high frequency band (i.e., .15 to \ .4 Hz) by default. RRV_LFHF|The ratio of low frequency power to high frequency power. RRV_LFn|The normalized low frequency, obtained by dividing the low frequency power by \ the total power. RRV_HFn|The normalized high frequency, obtained by dividing the low frequency power by \ total power. RRV_SD1|SD1 is a measure of the spread of breath-to-breath intervals on the Poincaré \ plot perpendicular to the line of identity. It is an index of short-term variability. RRV_SD2|SD2 is a measure of the spread of breath-to-breath intervals on the Poincaré \ plot along the line of identity. It is an index of long-term variability. RRV_SD2SD1|The ratio between short and long term fluctuations of the breath-to-breath \ intervals (SD2 divided by SD1). RRV_DFA_alpha1|The "short-term" fluctuation value generated from Detrended Fluctuation \ Analysis i.e. the root mean square deviation from the fitted trend of the \ breath-to-breath intervals. Will only be computed if mora than 160 breath cycles \ in the signal. RRV_DFA_alpha2|The long-term fluctuation value. Will only be computed if mora than \ 640 breath cycles in the signal. RRV_ApEn|The approximate entropy of RRV, calculated by :func:`.entropy_approximate`. RRV_SampEn|The sample entropy of RRV, calculated by :func:`.entropy_sample`. * **MFDFA indices**: Indices related to the :func:`multifractal spectrum <.fractal_dfa()>`. See Also -------- signal_rate, rsp_peaks, signal_power, entropy_sample, entropy_approximate Examples -------- .. ipython:: python import neurokit2 as nk rsp = nk.rsp_simulate(duration=90, respiratory_rate=15) rsp, info = nk.rsp_process(rsp) nk.rsp_rrv(rsp, show=True) References ---------- * Soni, R., & Muniyandi, M. (2019). Breath rate variability: a novel measure to study the meditation effects. International Journal of Yoga, 12(1), 45. """ # Sanitize input rsp_rate, troughs = _rsp_rrv_formatinput(rsp_rate, troughs, sampling_rate) # Get raw and interpolated R-R intervals bbi = np.diff(troughs) / sampling_rate * 1000 rsp_period = 60 * sampling_rate / rsp_rate # Get indices rrv = {} # Initialize empty dict rrv.update(_rsp_rrv_time(bbi)) rrv.update( _rsp_rrv_frequency(rsp_period, sampling_rate=sampling_rate, show=show, silent=silent) ) rrv.update(_rsp_rrv_nonlinear(bbi)) rrv = pd.DataFrame.from_dict(rrv, orient="index").T.add_prefix("RRV_") if show: _rsp_rrv_plot(bbi) return rrv
# ============================================================================= # Methods (Domains) # ============================================================================= def _rsp_rrv_time(bbi): diff_bbi = np.diff(bbi) out = {} # Initialize empty dict # Mean based out["RMSSD"] = np.sqrt(np.mean(diff_bbi**2)) out["MeanBB"] = np.nanmean(bbi) out["SDBB"] = np.nanstd(bbi, ddof=1) out["SDSD"] = np.nanstd(diff_bbi, ddof=1) out["CVBB"] = out["SDBB"] / out["MeanBB"] out["CVSD"] = out["RMSSD"] / out["MeanBB"] # Robust out["MedianBB"] = np.nanmedian(bbi) out["MadBB"] = mad(bbi) out["MCVBB"] = out["MadBB"] / out["MedianBB"] # # Extreme-based # nn50 = np.sum(np.abs(diff_rri) > 50) # nn20 = np.sum(np.abs(diff_rri) > 20) # out["pNN50"] = nn50 / len(rri) * 100 # out["pNN20"] = nn20 / len(rri) * 100 # # # Geometrical domain # bar_y, bar_x = np.histogram(rri, bins=range(300, 2000, 8)) # bar_y, bar_x = np.histogram(rri, bins="auto") # out["TINN"] = np.max(bar_x) - np.min(bar_x) # Triangular Interpolation of the NN Interval Histogram # out["HTI"] = len(rri) / np.max(bar_y) # HRV Triangular Index return out def _rsp_rrv_frequency( rsp_period, vlf=(0, 0.04), lf=(0.04, 0.15), hf=(0.15, 0.4), sampling_rate=1000, method="welch", show=False, silent=True, ): power = signal_power( rsp_period, frequency_band=[vlf, lf, hf], sampling_rate=sampling_rate, method=method, max_frequency=0.5, show=show, ) power.columns = ["VLF", "LF", "HF"] out = power.to_dict(orient="index")[0] if silent is False: for frequency in out.keys(): if out[frequency] == 0.0: warn( "The duration of recording is too short to allow" " reliable computation of signal power in frequency band " + frequency + "." " Its power is returned as zero.", category=NeuroKitWarning, ) # Normalized total_power = np.sum(power.values) out["LFHF"] = out["LF"] / out["HF"] out["LFn"] = out["LF"] / total_power out["HFn"] = out["HF"] / total_power return out def _rsp_rrv_nonlinear(bbi): diff_bbi = np.diff(bbi) out = {} # Poincaré plot out["SD1"] = np.sqrt(np.std(diff_bbi, ddof=1) ** 2 * 0.5) out["SD2"] = np.sqrt(2 * np.std(bbi, ddof=1) ** 2 - 0.5 * np.std(diff_bbi, ddof=1) ** 2) out["SD2SD1"] = out["SD2"] / out["SD1"] # CSI / CVI # T = 4 * out["SD1"] # L = 4 * out["SD2"] # out["CSI"] = L / T # out["CVI"] = np.log10(L * T) # out["CSI_Modified"] = L ** 2 / T # Entropy out["ApEn"] = entropy_approximate(bbi, dimension=2)[0] out["SampEn"] = entropy_sample(bbi, dimension=2, tolerance=0.2 * np.std(bbi, ddof=1))[0] # DFA if len(bbi) / 10 > 16: out["DFA_alpha1"] = fractal_dfa(bbi, scale=np.arange(4, 17), multifractal=False)[0] # For multifractal mdfa_alpha1, _ = fractal_dfa( bbi, multifractal=True, q=np.arange(-5, 6), scale=np.arange(4, 17) ) for k in mdfa_alpha1.columns: out["MFDFA_alpha1_" + k] = mdfa_alpha1[k].values[0] if len(bbi) > 65: out["DFA_alpha2"] = fractal_dfa(bbi, scale=np.arange(16, 65), multifractal=False)[0] # For multifractal mdfa_alpha2, _ = fractal_dfa( bbi, multifractal=True, q=np.arange(-5, 6), scale=np.arange(16, 65) ) for k in mdfa_alpha2.columns: out["MFDFA_alpha2_" + k] = mdfa_alpha2[k].values[0] return out # ============================================================================= # Internals # ============================================================================= def _rsp_rrv_formatinput(rsp_rate, troughs, sampling_rate=1000): if isinstance(rsp_rate, tuple): rsp_rate = rsp_rate[0] troughs = None if isinstance(rsp_rate, pd.DataFrame): df = rsp_rate.copy() cols = [col for col in df.columns if "RSP_Rate" in col] if len(cols) == 0: cols = [col for col in df.columns if "RSP_Troughs" in col] if len(cols) == 0: raise ValueError( "NeuroKit error: _rsp_rrv_formatinput(): Wrong input, " "we couldn't extract rsp_rate and respiratory troughs indices." ) else: rsp_rate = signal_rate( df[cols], sampling_rate=sampling_rate, desired_length=len(df) ) else: rsp_rate = df[cols[0]].values if troughs is None: try: troughs = _signal_formatpeaks_sanitize(df, key="RSP_Troughs") except NameError as e: raise ValueError( "NeuroKit error: _rsp_rrv_formatinput(): " "Wrong input, we couldn't extract " "respiratory troughs indices." ) from e else: troughs = _signal_formatpeaks_sanitize(troughs, key="RSP_Troughs") return rsp_rate, troughs def _rsp_rrv_plot(bbi): # Axes ax1 = bbi[:-1] ax2 = bbi[1:] # Compute features poincare_features = _rsp_rrv_nonlinear(bbi) sd1 = poincare_features["SD1"] sd2 = poincare_features["SD2"] mean_bbi = np.mean(bbi) # Plot fig = plt.figure(figsize=(12, 12)) ax = fig.add_subplot(111) plt.title("Poincaré Plot", fontsize=20) plt.xlabel("BB_n (s)", fontsize=15) plt.ylabel("BB_n+1 (s)", fontsize=15) plt.xlim(min(bbi) - 10, max(bbi) + 10) plt.ylim(min(bbi) - 10, max(bbi) + 10) ax.scatter(ax1, ax2, c="b", s=4) # Ellipse plot feature ellipse = matplotlib.patches.Ellipse( xy=(mean_bbi, mean_bbi), width=2 * sd2 + 1, height=2 * sd1 + 1, angle=45, linewidth=2, fill=False, ) ax.add_patch(ellipse) ellipse = matplotlib.patches.Ellipse( xy=(mean_bbi, mean_bbi), width=2 * sd2, height=2 * sd1, angle=45 ) ellipse.set_alpha(0.02) ellipse.set_facecolor("blue") ax.add_patch(ellipse) # Arrow plot feature sd1_arrow = ax.arrow( mean_bbi, mean_bbi, -sd1 * np.sqrt(2) / 2, sd1 * np.sqrt(2) / 2, linewidth=3, ec="r", fc="r", label="SD1", ) sd2_arrow = ax.arrow( mean_bbi, mean_bbi, sd2 * np.sqrt(2) / 2, sd2 * np.sqrt(2) / 2, linewidth=3, ec="y", fc="y", label="SD2", ) plt.legend(handles=[sd1_arrow, sd2_arrow], fontsize=12, loc="best") return fig